亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
we need to take into account the connection between the traveltimederivatives in~(\ref{eqn:ampint}) and the geometry of the reflector.As follows directly from the trigonometry of the incident andreflected rays triangle (Figure \ref{fig:ocoray}),\begin{eqnarray}h & = & {r-s \over 2}=D\,{{\cos{\alpha}\,\sin{\gamma}\,\cos{\gamma}} \over{\cos^2{\alpha}-\sin^2{\gamma}}}\;,\label{eqn:geoh}\\y & = & {r+s \over 2}=x+D\,{{\cos^2{\alpha}\,\sin{\alpha}} \over{\cos^2{\alpha}-\sin^2{\gamma}}}\;,\label{eqn:geoy}\\y_0 & = & x+D\,\sin{\alpha}\;,\label{eqn:geoy0}\end{eqnarray}where $D$ is the length of the normal ray. Let $\tau_0=2\,D/v$ be thezero-offset reflection traveltime. Combiningequations~(\ref{eqn:geoh}) and~(\ref{eqn:geoy0}) with(\ref{eqn:length}), we can get the following relationship:\begin{equation}a={\tau_n\over\tau_0}={{\cos{\alpha}\,\cos{\gamma}}\over\left(\cos^2{\alpha}-\sin^2{\gamma}\right)^{1/2}}=\left(1+{{\sin^2{\alpha}\,\sin^2{\gamma}}\over{\cos^2{\alpha}-\sin^2{\gamma}}}\right)^{1/2}={h\,\over\sqrt{h^2-\left(y-y_0\right)^2}}\;,\label{eqn:A}\end{equation}which describes the ``DMO smile''~(\ref{eqn:smilezott}) found by\cite{GPR29-03-03740406} in geometric terms.Equation~(\ref{eqn:A}) allows for a convenient change of variablesin equation~(\ref{eqn:ampint}). Let the reflection angle $\gamma$ be aparameter monotonically increasing along a time ray. In this case,each time ray is uniquely determined by the position of the reflectionpoint, which in turn is defined by the values of $D$ and $\alpha$.According to this change of variables, we candifferentiate~(\ref{eqn:A}) along a time ray to get\begin{equation}{{d\tau_n}\over\tau_n}=-{{\sin^2{\alpha}}\over{2\,\cos^2{\gamma}\,\left(\cos^2{\gamma}-\sin^2{\alpha}\right)}}\,d\left(\cos^2{\gamma}\right)\;.\label{eqn:dt2tg}\end{equation}Note also that the quantity $h\,\left(\tau_n\,{\partial \tau_n \over    \partial h} \right)^{-1}$ in equation~(\ref{eqn:ampint}) coincidesexactly with the time ray invariant $C_3$ found inequation~(\ref{eqn:abc}). Therefore its value is constant along eachtime ray and equals\begin{equation}h\,\left(\tau_n\,{\partial \tau_n \over \partial h}\right)^{-1}=-{v^2 \over 4\, \sin^2{\alpha}}\;.\label{eqn:c3}\end{equation}Finally, as shown in Appendix~\ref{chapter:deriv},\begin{equation}\tau_n\,\left({\partial^2 \tau_n \over \partial y^2}-{\partial^2 \tau_n \over \partial h^2}\right)=4\,{\cos^2{\gamma}\over v^2}\,\left({\sin^2{\alpha}+DK}\over{\cos^2{\gamma}+DK}\right)\;,\label{eqn:curve}\end{equation}where $K$ is the reflector curvature at the reflection point.Substituting (\ref{eqn:dt2tg}),~(\ref{eqn:c3}), and~(\ref{eqn:curve})into~(\ref{eqn:ampint}) transforms the integral to the form\begin{eqnarray*} \int_{t_o}^{t_n}\left[h\,\left({\partial^2 \tau_n \over \partial y^2}-{\partial^2 \tau_n \over \partial h^2}\right)\,\left(\tau_n\,{\partial \tau_n \over \partial h} \right)^{-1}\right]\,d\tau_n = \end{eqnarray*}\begin{equation} = -{1 \over 2}\,\int_{\cos^2{\gamma_0}}^{\cos^2{\gamma}}\left({1 \over {\cos^2{\gamma'}-\sin^2{\alpha}}}-{1 \over{\cos^2{\gamma'}+DK}}\right)\,d\left(\cos^2{\gamma'}\right) \label{eqn:int2g}\end{equation}which we can evaluate analytically. The final equation for theamplitude transformation is\begin{eqnarray}A_n & = & A_0\,{\sqrt{\cos^2{\gamma}-\sin^2{\alpha}}\over\sqrt{\cos^2{\gamma_0}-\sin^2{\alpha}}}\,\left({\cos^2{\gamma_0}+DK}\over{\cos^2{\gamma}+DK}\right)^{1/2}=\nonumber \\& = & A_0\,{{\tau_0\,\cos{\gamma}}\over{\tau_n\,\cos{\gamma_0}}}\,\left({\cos^2{\gamma_0}+DK}\over{\cos^2{\gamma}+DK}\right)^{1/2}\;. \label{eqn:ampcurve}\end{eqnarray}In case of a plane reflector, the curvature $K$ is zero, andequation~(\ref{eqn:ampcurve}) coincides with~(\ref{eqn:ampplane}).In the general case can be rewritten as\begin{equation}A_n={{c\,\cos{\gamma}}\over{\tau_n\,\sqrt{\cos^2{\gamma}+DK}}}\;,\label{eqn:ampray}\end{equation}where $c$ is constant along each time ray (it may vary with the reflection pointlocation on the reflector but not with the offset). We should compare equation(\ref{eqn:ampray}) with the known expression for the reflection wave amplitude of the leadingray series term in 2.5-D media \cite[]{cwp}:\begin{equation}A={{C_R(\gamma) \Psi}\over G}\;,\label{eqn:amptrue}\end{equation}where $C_R$ stands for the angle-dependent reflection coefficient, $G$ is thegeometric spreading\begin{equation}G=v \tau {\sqrt{\cos^2{\gamma}+DK}\over \cos{\gamma}}\;,\label{eqn:GS}\end{equation}and $\Psi$ includes other possible factors (such as the sourcedirectivity) that we can either correct or neglect in the preliminaryprocessing.  It is evident that the curvature dependence of theamplitude transformation (\ref{eqn:ampray}) coincides completely withthe true geometric spreading factor (\ref{eqn:GS}) and that the angledependence of the reflection coefficient is not accounted for the offsetcontinuation process. If the wavelet shape of the reflected wave onseismic sections [$R_n$ in equation~(\ref{eqn:raymethod})] isdescribed by the delta function, then, as follows from the knownproperties of this function,\begin{equation}A\,\delta\left(t-\tau(y,h)\right)=\left|{{dt_n} \over {dt}}\right|\,A\,\delta\left(t_n-\tau_n(y,h)\right) ={t \over t_n}\,A\,\delta\left(t_n-\tau_n(y,h)\right)\;, \label{eqn:deltafun} \end{equation}which leads to the equality\begin{equation}A_n=A\,{t \over t_n}\;.\label{eqn:a2an} \end{equation}Combining equation~(\ref{eqn:a2an}) with equations~(\ref{eqn:amptrue})and~(\ref{eqn:ampray}) allows us to evaluate the amplitude aftercontinuation from some initial offset $h_0$ to another offset $h_1$,as follows:\begin{equation}A_1={{C_R(\gamma_0) \Psi_0}\over G_1}\;.\label{eqn:ampfin}\end{equation}According to equation~(\ref{eqn:ampfin}), the OC process described byequation (\ref{eqn:OCequation}) is amplitude-preserving in the sensethat corresponds to the definition of Born DMO\cite[]{born,GEO56-02-01820189}. This means that the geometric spreadingfactor from the initial amplitudes is transformed to the truegeometric spreading on the continued section, while the reflectioncoefficient stays the same. This remarkable dynamic property allowsAVO (amplitude versus offset) analysis to be performed by a dynamiccomparison between true constant-offset sections and the sectionstransformed by OC from different offsets.  With a simple trick, theoffset coordinate is transferred to the reflection angles for the AVOanalysis.  As follows from~(\ref{eqn:A}) and~(\ref{eqn:length}),\begin{equation}{\tau_n^2 \over \tau\,\tau_0}=\cos{\gamma}\;.\label{eqn:AVO}\end{equation}If we include the ${t_n^2 \over t\,t_0}$ factor in the DMO operator(continuation to zero offset) and divide the result by the DMO sectionobtained without this factor, the resultant amplitude of the reflectedevents will be directly proportional to $\cos{\gamma}$, where thereflection angle $\gamma$ corresponds to the initial offset. Ofcourse, this conclusion is rigorously valid for constant-velocity2.5-D media only.\cite{GEO58-01-00470066} suggest a definition of true-amplitude DMO differentfrom that of Born DMO. The difference consists of two importantcomponents:\begin{enumerate}\item {\em True-amplitude DMO addresses preserving the peak amplitude    of the image wavelet instead of preserving its spectral density.}  In the terms of this paper, the peak amplitude corresponds to the  pre-NMO amplitude $A$ from formula~(\ref{eqn:amptrue}) instead of  corresponding to the spectral density amplitude $A_n$.  A simple  correction factor $t \over t_n$ would help us take the difference  between the two amplitudes into account. Multiplication by $t \over  t_n$ can be easily done at the NMO stage.\item {\em Seismic sections are multiplied by time to correct for the    geometric spreading factor prior to DMO (or, in our case, offset    continuation) processing.} \end{enumerate} As followsfrom~(\ref{eqn:GS}), multiplication by $t$ is a valid geometricspreading correction for plane reflectors only.  It is theamplitude-preserving offset continuation based on the OCequation~(\ref{eqn:OCequation}) that is able to correct for thecurvature-dependent factor in the amplitude. To take into account thesecond aspect of Black's definition, we can consider the modifiedfield $\hat{P}$ such that\begin{equation}\hat{P}\left(y,h,t_n\right)=t\,P\left(y,h,t_n\right)\;.\label{eqn:p2pt}\end{equation}Substituting~(\ref{eqn:p2pt}) into the OC equation~(\ref{eqn:OCequation}) transforms thelatter to the form\begin{equation}h \, \left( {\partial^2 \hat{P} \over \partial y^2} - {\partial^2 \hat{P} \over\partial h^2} \right) \, = \, t_n \, {\partial^2 \hat{P} \over {\partial t_n \,\partial h}}\, -{\partial \hat{P} \over \partial h}\; . \label{eqn:BSZequation} \end{equation}Equations~(\ref{eqn:BSZequation}) and~(\ref{eqn:OCequation}) differonly with respect to the first-order damping term $\partial \hat{P}\over \partial h$.  This term affects the amplitude behavior but notthe traveltimes, since the eikonal-type equation~(\ref{eqn:eikonal})depends on the second-order terms only.  Offset continuation operatorsbased on~(\ref{eqn:BSZequation}) conform to Black's definition oftrue-amplitude processing.\cite{menorm} describe an alternative approach toconfirming the kinematic and amplitude validity of the offsetcontinuation equation. Applying equation~(\ref{eqn:OCequation})directly on the Kirchhoff model of prestack seismic data shows thatthe equation is satisfied to the same asymptotic order of accuracyas the Kirchhoff modeling approximation \cite[]{haddon,norm}.\section{Integral offset continuation operator}%%%%%%%%%%%%%%%%%%%%%%Equation~(\ref{eqn:OCequation}) describes a continuous process ofreflected wavefield continuation in the time-offset-midpoint domain.In order to find an integral-type operator that performs the one-stepoffset continuation, I consider the following initial-valueproblem for equation~(\ref{eqn:OCequation}):{\em Given a post-NMO constant-offset section at half-offset $h_1$}\begin{equation}\left.P(t_n,h,y)\right|_{h=h_1}=P^{(0)}_1(t_n,y) \label{eqn:bound0} \end{equation}{\em and its first-order derivative with respect to offset}\begin{equation}\left.\partial P(t_n,h,y)\over \partial h\right|_{h=h_1}=P^{(1)}_1(t_n,y)\;, \label{eqn:bound1} \end{equation}{\em find the corresponding section $P^{(0)}(t_n,y)$ at offset $h$.}Equation~(\ref{eqn:OCequation}) belongs to the hyperbolic type, withthe offset coordinate $h$ being a ``time-like'' variable and themidpoint coordinate $y$ and the time $t_n$ being ``space-like''variables.  The last condition~(\ref{eqn:bound1}) is required for theinitial value problem to be well-posed \cite[]{kurant}. From a physicalpoint of view, its role is to separate the two different wave-likeprocesses embedded in equation~(\ref{eqn:OCequation}), which areanalogous to inward and outward wave propagation. We will associatethe first process with continuation to a larger offset and the secondone with continuation to a smaller offset.  Though the offsetderivatives of data are not measured in practice, they can beestimated from the data at neighboring offsets by a finite-differenceapproximation. Selecting a propagation branch explicitly, for exampleby considering the high-frequency asymptotics of the continuationoperators, can allow us to eliminate the need forcondition~(\ref{eqn:bound1}). In this section, I discuss the exactintegral solution of the OC equation and analyze its asymptotics.The integral solution of problem~(\ref{eqn:bound0}-\ref{eqn:bound1})for equation~(\ref{eqn:OCequation}) is obtained in with the help ofthe classic methods of mathematical physics\cite[]{me,Fomel.sepphd.107}. It takes the explicit form\begin{eqnarray}P(t_n,h,y) & = &\int\!\!\int P^{(0)}_1(t_1,y_1)\,G_0(t_1,h_1,y_1;t_n,h,y)\,dt_1\,dy_1\nonumber \\ + & & \int\!\!\int P^{(1)}_1(t_1,y_1)\,G_1(t_1,h_1,y_1;t_n,h,y)\,dt_1\,dy_1\;,\label{eqn:integral} \end{eqnarray}where the Green's functions $G_0$ and $G_1$ are expressed as\begin{eqnarray}G_0(t_1,h_1,y_1;t_n,h,y) & = & \mbox{sign}(h-h_1)\,{H(t_n) \over \pi}\,{\partial \over \partial t_n}\,\left\{H(\Theta) \over \sqrt{\Theta}\right\}\;,\label{eqn:green0} \\G_1(t_1,h_1,y_1;t_n,h,y) & = & \mbox{sign}(h-h_1)\,{H(t_n) \over \pi}\,h\,{t_n \over t_1^2}\,\left\{H(\Theta) \over \sqrt{\Theta}\right\}\;,\label{eqn:green1} \end{eqnarray}and the parameter $\Theta$ is\begin{equation}\Theta(t_1,h_1,y_1;t_n,h,y)  = \left(h_1^2/t_1^2-h^2/t_n^2\right)\,\left(t_1^2-t_n^2\right)-\left(y_1-y\right)^2\;.\label{eqn:gamma}\end{equation}$H$ stands for the Heaviside step-function.  From equations~(\ref{eqn:green0}) and~(\ref{eqn:green1}) one can seethat the impulse response of the offset continuation operator isdiscontinuous in the time-offset-midpoint space on a surface definedby the equality\begin{equation}\Theta(t_1,h_1,y_1;t_n,h,y)  = 0\;,\label{eqn:conoid}\end{equation}which describes the ``wavefronts'' of the offset continuation process.In terms of the theory of characteristics \cite[]{kurant}, the surface$\Theta=0$ corresponds to the characteristic conoid formed by thebi-characteristics of equation~(\ref{eqn:OCequation}) -- time rays

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
石原莉奈在线亚洲二区| 亚洲国产精品二十页| 亚洲欧美二区三区| 色噜噜久久综合| 亚洲va韩国va欧美va| 91精品国产综合久久精品麻豆| 午夜视频在线观看一区二区三区| 这里只有精品免费| 国精产品一区一区三区mba视频 | 亚洲中国最大av网站| 成人污污视频在线观看| 亚洲欧美另类久久久精品2019| 欧美午夜片在线看| 精品一区二区三区久久| 国产精品 日产精品 欧美精品| 日本一区二区三区国色天香| 色婷婷av一区| 麻豆精品在线观看| 综合久久久久久久| 欧美精品99久久久**| 国产成人综合网| 亚洲国产精品天堂| 国产亚洲精久久久久久| 在线亚洲+欧美+日本专区| 美女视频网站黄色亚洲| 亚洲欧美一区二区在线观看| 欧美精品在线一区二区三区| 日日摸夜夜添夜夜添精品视频| 99久久久久久99| 久久一二三国产| 亚洲国产视频一区二区| 国内精品免费**视频| 国产揄拍国内精品对白| 欧美r级在线观看| 久久夜色精品一区| 亚洲福利国产精品| 国产精品久久久久久久久免费相片 | 精品综合久久久久久8888| 欧美国产禁国产网站cc| 制服丝袜亚洲网站| 91激情在线视频| 国产精品一二三四| 日韩综合小视频| 亚洲精品国久久99热| 久久这里只有精品视频网| 欧美特级限制片免费在线观看| 国产**成人网毛片九色 | 久久网这里都是精品| 欧美日韩五月天| 色综合色综合色综合色综合色综合| 狠狠色综合播放一区二区| 亚洲午夜羞羞片| 亚洲欧美日韩国产另类专区| 国产女人aaa级久久久级| 精品国产伦一区二区三区观看方式| 在线观看一区二区视频| 丁香婷婷综合五月| 国产综合久久久久久久久久久久| 亚洲va中文字幕| 亚洲午夜激情网页| 亚洲一二三四在线| 国产日韩三级在线| 91国产免费看| 成人动漫中文字幕| 麻豆免费看一区二区三区| 国产精品一区二区视频| 在线免费观看成人短视频| 一区二区三区欧美日| 日韩av在线发布| 亚洲乱码国产乱码精品精的特点| 风间由美一区二区av101| 性欧美大战久久久久久久久| 亚洲黄色免费网站| 青青草91视频| 91在线视频播放| 国产电影一区在线| 国产喷白浆一区二区三区| 成人性视频免费网站| 日本在线不卡视频一二三区| 欧美日韩不卡视频| 欧美浪妇xxxx高跟鞋交| 青青草97国产精品免费观看无弹窗版| 国产精品久久久久毛片软件| 久久精品无码一区二区三区| 国产精品入口麻豆九色| 国产精品理论片| 国产精品嫩草影院com| 久久先锋影音av| 欧美一级二级在线观看| www.日韩av| 国产成人精品一区二区三区四区| 亚洲欧美激情插 | 国产.欧美.日韩| 亚洲男同性视频| 成人欧美一区二区三区白人| 欧美激情一区在线观看| 精品粉嫩aⅴ一区二区三区四区| av在线不卡电影| 国产美女av一区二区三区| 日韩经典中文字幕一区| 亚洲视频资源在线| 亚洲激情图片qvod| 久久午夜免费电影| 国产无遮挡一区二区三区毛片日本| 日韩视频在线你懂得| 精品国产一区二区亚洲人成毛片| 欧美私模裸体表演在线观看| 国产成人综合亚洲91猫咪| 日韩精品亚洲专区| 日韩av一区二| 成人午夜在线播放| 日韩欧美国产麻豆| 精品国产自在久精品国产| 欧美伦理影视网| 久久精品视频在线看| 亚洲激情图片一区| 久久99九九99精品| 一本高清dvd不卡在线观看 | 亚洲午夜电影在线| 久久精品国产精品亚洲精品| 懂色中文一区二区在线播放| 欧美日韩高清在线| 国产精品久久精品日日| 日本大胆欧美人术艺术动态| 成人av在线一区二区| 欧美精品乱码久久久久久 | 日韩精品一区二区三区在线播放| 欧美激情中文不卡| 日韩av网站免费在线| 成人激情开心网| 亚洲精品国产a| 国产91色综合久久免费分享| 欧美丝袜自拍制服另类| 欧美国产精品一区二区三区| 青青草原综合久久大伊人精品优势 | 亚洲欧美在线高清| 麻豆精品在线播放| 在线日韩av片| 国产精品国产三级国产aⅴ无密码| 日本aⅴ精品一区二区三区| 在线欧美日韩精品| 国产精品久久久久影院老司 | 亚洲一区在线视频观看| av一区二区三区四区| 久久人人超碰精品| 麻豆91精品视频| 欧美另类videos死尸| 一级日本不卡的影视| 波多野结衣一区二区三区| 精品久久久久香蕉网| 日韩av成人高清| 欧美综合在线视频| 亚洲免费毛片网站| 99久久99久久精品免费观看 | 在线精品视频免费播放| 中文字幕一区二区三区不卡在线| 国产在线不卡一区| 精品久久久久av影院| 日本麻豆一区二区三区视频| 欧美精品xxxxbbbb| 亚洲1区2区3区视频| 欧美日本一区二区三区| 午夜精彩视频在线观看不卡| 欧美日精品一区视频| 亚洲午夜久久久久久久久电影院| 欧美曰成人黄网| 夜夜嗨av一区二区三区网页| 欧美调教femdomvk| 亚洲福利视频一区| 在线电影院国产精品| 丝袜亚洲另类丝袜在线| 91精品国产一区二区三区蜜臀| 亚洲成在人线在线播放| 91精品黄色片免费大全| 蜜臂av日日欢夜夜爽一区| 精品剧情v国产在线观看在线| 国产一区不卡在线| 国产欧美一区二区精品性色| 国产69精品久久777的优势| 中文字幕日韩av资源站| 一本一道综合狠狠老| 亚洲国产精品久久一线不卡| 欧美理论电影在线| 国产美女娇喘av呻吟久久| 国产精品人成在线观看免费 | 欧美一区二区三区精品| 久久成人羞羞网站| 国产欧美日韩不卡| 91色|porny| 三级精品在线观看| 久久综合九色综合97婷婷| 成人看片黄a免费看在线| 一区二区在线观看av| 91精品国产综合久久久蜜臀粉嫩| 捆绑紧缚一区二区三区视频| 久久精品日韩一区二区三区| 色综合久久中文字幕综合网 | 久久久影院官网| 亚洲已满18点击进入久久| 久久这里只有精品视频网|