亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
\begin{equation}\widetilde{M}(t)=\int Y(t,\omega)\,D(\omega)\,\exp\left[-i\omega \phi (t,\omega)\right]\,d\omega\label{eqn:b1}\end{equation}constitute a pair of asymptotically inverse operators($\widetilde{M}(t)$ matching $M(t)$ in the high-frequency asymptotics)if\begin{equation}X(t,\omega)\,Y(t,\omega)={Z(t,\omega) \over {2\,\pi}}\;,\label{eqn:belka}\end{equation}where $Z$ is the ``Beylkin determinant''\begin{equation}Z(t,\omega)=\left|\partial \omega \over \partial \hat{\omega}\right|\;\mbox{for}\;\hat{\omega}=\omega\,{\partial \phi(t,\omega) \over \partial t}\;.\label{eqn:det}\end{equation}With respect to the high-frequency asymptotic representation, we canrecast (\ref{eqn:IDMO}) in the equivalent form by moving the timederivative under the integral sign:\begin{equation}\widetilde{P}(t_n,k) \approx {H(t_n) \over {2\,\pi}}\,\mbox{Re}\left[\int_{-\infty}^{\infty}A^{-2}\widetilde{\widetilde{P}}_0(\omega_0,k)\, \exp\left(-i \omega_0\,|t_n|\,A\right)\,d\omega_0\right]\label{eqn:IDMO2} \end{equation}Now the asymptotic inverse of~(\ref{eqn:IDMO2}) is evaluated bymeans of Beylkin's method (\ref{eqn:b0})-(\ref{eqn:b1}), which leadsto an amplitude-preserving one-term DMO operator of the form\begin{equation}\widetilde{\widetilde{P}}_0(\omega_0,k)  = \mbox{Im}\left[\int_{-\infty}^{\infty} B\widetilde{P}^{(0)}_1\left(\left|t_1\right|,k\right)\,\exp\left(i \omega_0\,|t_1|\,A\right)\,dt_1\right]\;,\label{eqn:born} \end{equation}where \begin{equation}B = A^2 {\partial \over \partial \omega_0}\left(\omega_0\,{{\partial (t_n\,A)} \over \partial t_n}\right) = A^{-1}\,(2\,A^2 - 1)\;.\label{eqn:jack} \end{equation}  The amplitude factor~(\ref{eqn:jack}) corresponds exactly to that ofBorn DMO \cite[]{born} in full accordance with the conclusions of theasymptotic analysis of the offset-continuation amplitudes. Ananalogous result can be obtained with the different definition ofamplitude preservation proposed by \cite{GEO58-01-00470066}. Inthe time-and-space domain, the operator asymptotically analogous to(\ref{eqn:born}) is found by applying either the stationary phasetechnique \cite[]{GEO55-05-05950607,GEO58-01-00470066} or Goldin's method ofdiscontinuities \cite[]{goldintomo,Goldin.sep.67.171}, which is thetime-and-space analog of Beylkin's asymptotic inverse theory\cite[]{stovas}. The time-and-space asymptotic DMO operator takes theform\begin{equation}P_0(t_0,y) = {\bf D}^{1/2}_{-t_0}\,\int w_0(\xi;h_1,t_0)\,P^{(0)}_1(\theta^{(-)}(\xi;h_1,0,t_0),y_1-\xi)\,d\xi\;,\label{eqn:TADMO}\end{equation} where the weighting function $w_0$ is defined as \begin{equation}w_0(\xi;h_1,t_0)=\sqrt{t_0 \over {2\,\pi}}\, {{h_1\,(h_1^2+\xi^2)} \over (h_1^2-\xi^2)^2}\;.\label{eqn:TAw}\end{equation}\section{Offset continuation in the log-stretch domain}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The log-stretch transform, proposed by \cite{GPR30-06-08130828}and further developed by many other researchers, is a usefultool in DMO and OC processing. Applying a log-stretch transform of theform\begin{equation}\sigma = \ln\left|t_n \over t_* \right|\;, \label{eqn:log}\end{equation}where $t_*$ is an arbitrarily chosen time constant, eliminates thetime dependence of the coefficients in equation~(\ref{eqn:OCequation})and therefore makes this equation invariant to time shifts. After thedouble Fourier transform with respect to the midpoint coordinate $y$and to the transformed (log-stretched) time coordinate $\sigma$, thepartial differential equation~(\ref{eqn:OCequation}) takes the form ofan ordinary differential equation,\begin{equation}h\,\left({{d^2 \widehat{\widehat{P}}} \over {dh^2}} + k^2\,\widehat{\widehat{P}}\right) =i\Omega\,{{d \widehat{\widehat{P}}} \over {dh}}\;,\label{eqn:LSequation}\end{equation}where\begin{equation}\widehat{\widehat{P}}(h) = \int\!\int P(t_n=t_*\,\exp(\sigma),h,y)\,\exp(i\Omega\sigma - iky)\,d\sigma\,dy\;. \label{eqn:LSFT}\end{equation}Equation~(\ref{eqn:LSequation}) has the known general solution,expressed in terms of cylinder functions of complex order $\lambda ={{1+i\Omega} \over 2}$ \cite[]{watson}\begin{equation}\widehat{\widehat{P}}(h) = C_1(\lambda)\,(kh)^{\lambda}\,J_{-\lambda}(kh)+C_2(\lambda)\,(kh)^{\lambda}\,J_{\lambda}(kh)\;,\label{eqn:gensol}\end{equation}where $J_{-\lambda}$ and $J_{\lambda}$ are Bessel functions, and $C_1$and $C_2$ stand for some arbitrary functions of $\lambda$ that do notdepend on $k$ and $h$.In the general case of offset continuation, $C_1$ and $C_2$ areconstrained by the two initial conditions~(\ref{eqn:bound0}) and(\ref{eqn:bound1}). In the special case of continuation from zero offset, wecan neglect the second term in~(\ref{eqn:gensol}) as vanishing at the zerooffset. The remaining term defines the following operator of inverseDMO in the ${\Omega,k}$ domain:\begin{equation}\widehat{\widehat{P}}(h) = \widehat{\widehat{P}}(0)\,Z_{\lambda}(kh)\;,\label{eqn:OKDMO}\end{equation}where $Z_{\lambda}$ is the analytic function\begin{eqnarray}\nonumberZ_{\lambda}(x) & = & \Gamma(1-\lambda)\,\left(x \over 2\right)^{\lambda}\,J_{-\lambda}(x)={}_0F_1\left(;1-\lambda;-\frac{x^2}{4}\right) \\& = &\sum_{n=0}^{\infty} {(-1)^n \over n!}\,{\Gamma(1-\lambda) \over \Gamma(n+1-\lambda)}\,\left(x \over 2\right)^{2n}\;,\label{eqn:z}\end{eqnarray}$\Gamma$ is the gamma function and ${}_0F_1$ is the confluenthypergeometric limit function \cite[]{ab}.The DMO operator now can be derived as the inversion of operator(\ref{eqn:OKDMO}), which is a simple multiplication by$1/Z_{\lambda}(kh)$. Therefore, offset continuation becomes amultiplication by $Z_{\lambda}(kh_2)/Z_{\lambda}(kh_1)$ (the cascadeof two operators). This fact demonstrates an important advantage ofmoving to the log-stretch domain: both offset continuation and DMO are simplefilter multiplications in the Fourier domain of the log-stretched timecoordinate.In order to compare operator~(\ref{eqn:OKDMO}) with the known versionsof log-stretch DMO, we need to derive its asymptotic representationfor high frequency $\Omega$. The required asymptotic expressionfollows directly from the definition of function $Z_{\lambda}$ inequation~(\ref{eqn:z}) and the known asymptotic representation for a Besselfunction of high order \cite[]{watson}:\begin{equation}J_{\lambda}(\lambda z) \stackrel{\lambda \rightarrow \infty}{\approx} {{(\lambda z)^{\lambda}\,\exp\left(\lambda\,\sqrt{1-z^2}\right)} \over{e^{\lambda}\,\Gamma(\lambda+1)\,(1-z^2)^{1/4}\,\left\{1+\sqrt{1-z^2}\right\}^{\sqrt{1-z^2}}}}\;.\label{eqn:carlini}\end{equation}Substituting approximation~(\ref{eqn:carlini}) into~(\ref{eqn:z}) andconsidering the high-frequency limit of the resultant expressionyields\begin{equation}Z_{\lambda}(kh) \approx \left\{{1+\sqrt{1-\left(kh \over \lambda\right)^2}} \over2\right\}^{\lambda}\, {{\exp\left(\lambda\,\left[1 - \sqrt{1-\left(kh \over\lambda\right)^2}\right]\right)} \over \left(1-\left(kh \over \lambda\right)^2\right)^{1/4}} \approx{F(\epsilon)\,e^{i\Omega\,\psi(\epsilon)}}\;,\label{eqn:AOKDMO}\end{equation}where $\epsilon$ denotes the ratio ${2\,k\,h} \over\Omega$,\begin{equation}F(\epsilon)=\sqrt{{1+\sqrt{1+\epsilon^2}} \over{2\,\sqrt{1+\epsilon^2}}}\,\exp\left({1-\sqrt{1+\epsilon^2}} \over 2\right)\;,\label{eqn:F}\end{equation}and\begin{equation}\psi(\epsilon)={1 \over 2}\,\left(1 - \sqrt{1+\epsilon^2} +\ln\left({1 + \sqrt{1+\epsilon^2}} \over 2\right)\right)\;.\label{eqn:psi}\end{equation}The asymptotic representation~(\ref{eqn:AOKDMO}) is valid for highfrequency $\Omega$ and $|\epsilon| \leq 1$. Thephase function $\psi$ defined in~(\ref{eqn:psi}) coincides preciselywith the analogous term in Liner's \emph{exact log DMO}\cite[]{GEO55-05-05950607}, which provides the correctgeometric properties of DMO. Similar expressions for the log-stretchphase factor $\psi$ were derived in different ways by\cite{GEO61-03-08150820} and \cite{GEO61-04-11031114}.However, the amplitude term $F(\epsilon)$ differs from the previouslypublished ones because of the difference in the amplitude preservationproperties.  A number of approximate log DMO operators have been proposed in theliterature. As shown by \cite{GEO55-05-05950607}, all of them butexact log DMO distort the geometry of reflection effects at largeoffsets. The distortion is caused by the implied approximations of thetrue phase function $\psi$. Bolondi's OC operator\cite[]{GPR30-06-08130828} implies $\psi(\epsilon) \approx -{\epsilon^2  \over 8}$, Notfors' DMO \cite[]{GEO52-12-17181721} implies$\psi(\epsilon) \approx 1 - \sqrt{1+(\epsilon /2)^2}$, and the ``fullDMO'' \cite[]{SEG-1987-S14.1} has $\psi(\epsilon) \approx {1 \over 2}\ln\left[1-(\epsilon / 2)^2\right]$. All these approximations arevalid for small $\epsilon$ (small offsets or small reflector dips) andhave errors of the order of $\epsilon^4$ (Figure \ref{fig:pha}).  Therange of validity of Bolondi's operator is defined inequation~(\ref{eqn:hm}).    \sideplot{pha}{height=1.5in}{ Phase functions of the log    DMO operators. Solid line: exact log DMO; dashed line: Bolondi's    OC; dashed-dotted line: Bale's full DMO; dotted line: Notfors'    DMO.  }    In practice, seismic data are often irregularly sampled in space but  regularly sampled in time. This makes it attractive to apply offset  continuation and DMO operators in the $\{\Omega,y\}$ domain, where  the frequency $\Omega$ corresponds to the log-stretched time and  $y$ is the midpoint coordinate. Performing the inverse Fourier  transform on the spatial frequency transforms the inverse DMO  operator~(\ref{eqn:OKDMO}) to the $\{\Omega,y\}$ domain, where the  filter multiplication becomes a convolutional operator:\begin{equation}\widehat{P}(\Omega,h,y) ={\widehat{F}(\Omega) \over \sqrt{2\,\pi}}\,\int_{|\xi|<h}{ h \over {h^2-\xi^2}}\,\widehat{P_0}(\Omega,y-\xi)\,\exp\left(-{i\Omega \over 2}\,\ln\left(1-{\xi^2 \over h_1^2}\right)\right) \,d\xi\;.\label{eqn:OXDMO} \end{equation}Here $\widehat{F}(\Omega)$ is a high-pass frequency filter:\begin{equation}\widehat{F}(\Omega)={{\Gamma(1/2-i\Omega/2)}\over {\sqrt{1/2}\,\Gamma(-i\Omega/ 2)}}\;.\label{eqn:hat} \end{equation}At high frequencies $\widehat{F}(\Omega)$ is approximately equal to$(- i \Omega)^{1/2}$, which corresponds to the half-derivativeoperator $\left(\partial \over \partial \sigma \right)^{1/2}$, which,in turn, is equal to the $\left(t_n {\partial \over \partial t_n}\right)^{1/2}$ term of the asymptotic OCoperator~(\ref{eqn:asintegral}). The difference between the exactfilter $\widehat{F}$ and its approximation by the half-orderderivative operator is shown in Figure \ref{fig:flt}. This differenceis a measure of the validity of asymptotic OC operators.\plot{flt}{width=6in}{ Amplitude (left) and phase (right) of  the time filter in the log-stretch domain. The solid line is for the  exact filter; the dashed line for its approximation by the  half-order derivative filter. The horizontal axis corresponds to the  dimensionless log-stretch frequency $\Omega$.}Inverting operator~(\ref{eqn:OXDMO}), we can obtain the DMO operator in the$\{\Omega,y\}$ domain.\section{Discussion}The differential model for offset continuation is based on severalassumptions. It is important to fully realize them in order tounderstand the practical limitations of this model.\begin{itemize}\item The \emph{constant velocity} assumption is essential for  theoretical derivations. In practice, this limitation is not too  critical, because the operators act locally. DMO and  offset continuation algorithms based on the constant-velocity  assumptions are widely used in practice \cite[]{DMO00-00-04960496}.\item The \emph{single-mode} assumption does not include multiple  reflections in the model. If multiple events (with different  apparent velocities) are present in the data, they might require  extending the model. Convolving two (or more) differential offset  continuation operators, corresponding to different velocities, we  can obtain a higher-order differential operator for predicting  multiple events.\item The \emph{continuous AVO} assumption implies that the  reflectivity variation with offset is continuous and can be  neglected in a local neighborhood of a particular offset. While the  offset continuation model correctly predicts the geometric spreading  effects in the reflected wave amplitudes, it does not account for  the variation of the reflection coefficient with offset.\item The \emph{2.5-D} assumption was implicit in the derivation of  the offset continuation equation. According to this assumption, the  reflector does not change in the cross-line direction, and we can  always consider the reflectio

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产剧情av麻豆香蕉精品| 亚洲成年人网站在线观看| 一区二区三区国产豹纹内裤在线| 91精品国产综合久久香蕉麻豆| 99久久99久久精品国产片果冻| 狠狠色伊人亚洲综合成人| 日本午夜一本久久久综合| 极品少妇xxxx精品少妇| av不卡免费在线观看| 欧美三级中文字幕在线观看| 欧美久久免费观看| 国产精品69久久久久水密桃| 91丝袜美腿高跟国产极品老师 | 国产午夜精品福利| 91在线观看下载| 91国模大尺度私拍在线视频| 亚洲成人在线网站| 国产精品一区在线| 欧美大片一区二区| 91久久精品日日躁夜夜躁欧美| 欧美日韩精品欧美日韩精品一综合| 色综合天天综合网天天狠天天| 日韩电影在线免费看| eeuss鲁一区二区三区| 91日韩一区二区三区| 91国产丝袜在线播放| 欧美精品在欧美一区二区少妇| 在线播放中文一区| 久久久国产精华| 欧美一区日韩一区| 欧美性猛交一区二区三区精品| 美国欧美日韩国产在线播放| 亚洲免费毛片网站| 精品少妇一区二区三区视频免付费| 福利电影一区二区| 免费观看一级欧美片| 一区二区三区视频在线看| 午夜电影网亚洲视频| 亚洲综合色区另类av| 亚洲男人电影天堂| 免费的国产精品| 99久久精品国产一区二区三区| 色婷婷综合久久久| 色婷婷久久99综合精品jk白丝| 欧美日韩一区不卡| 国产人伦精品一区二区| 日韩精品最新网址| 国产欧美一区二区三区网站| 午夜激情综合网| 97久久超碰国产精品电影| 日韩欧美一级在线播放| 亚洲欧美日韩电影| 国产精品亚洲第一区在线暖暖韩国 | 欧美一级一级性生活免费录像| 国产欧美日韩另类一区| 日本中文字幕一区| 在线观看精品一区| 91精品免费在线| 亚洲丝袜美腿综合| 亚洲欧美福利一区二区| 国产一区二区调教| 成人免费高清在线| 91在线一区二区三区| 久久亚区不卡日本| 国产精品美女久久久久av爽李琼 | 国产风韵犹存在线视精品| 国产激情91久久精品导航| 7799精品视频| 亚洲成av人**亚洲成av**| 99国产精品视频免费观看| 国产精品网站导航| 粉嫩aⅴ一区二区三区四区| 久久天天做天天爱综合色| 加勒比av一区二区| 久久久久久久久久久99999| 青青草成人在线观看| 777xxx欧美| 蜜臀av一区二区| 日韩精品一区二区三区视频播放| 日日夜夜免费精品视频| 国产91丝袜在线播放九色| 337p日本欧洲亚洲大胆色噜噜| 久久 天天综合| 久久久久免费观看| 不卡的av网站| 日韩免费在线观看| 国模少妇一区二区三区| 久久这里只精品最新地址| 国产jizzjizz一区二区| 国产精品成人一区二区艾草| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美久久久久久久久久| 久久99精品久久久久婷婷| 欧美精品一区二区在线观看| 亚洲国产美女搞黄色| 国产精品亚洲人在线观看| 国产精品女主播在线观看| 色八戒一区二区三区| 日本午夜一本久久久综合| 久久久精品蜜桃| 97久久人人超碰| 日韩精品成人一区二区在线| 久久新电视剧免费观看| 色综合久久综合网| 奇米四色…亚洲| 国产精品污网站| 91精品国产91久久久久久最新毛片| 免费观看在线综合| 亚洲女人的天堂| 欧美成人欧美edvon| 成人激情动漫在线观看| 香蕉加勒比综合久久| 国产人妖乱国产精品人妖| 欧美亚洲一区二区在线观看| 国内一区二区在线| 亚洲在线观看免费| 国产日韩欧美一区二区三区综合| 91九色02白丝porn| 国产福利一区二区三区| 日本亚洲欧美天堂免费| 亚洲乱码国产乱码精品精98午夜| 成人午夜免费视频| 日韩在线观看一区二区| 国产精品二三区| 精品国产乱码久久| 欧美精品第1页| 91在线观看地址| 国产成人三级在线观看| 日韩av不卡在线观看| 亚洲美女偷拍久久| 国产婷婷精品av在线| 欧美一区二区三级| 欧美日韩免费在线视频| 99热精品一区二区| 粉嫩av一区二区三区粉嫩| 国精品**一区二区三区在线蜜桃| 一区二区高清在线| 亚洲乱码一区二区三区在线观看| 久久综合999| 欧美va在线播放| 欧美一区二区三区免费观看视频 | 午夜欧美视频在线观看| 中文字幕一区二区不卡| 99久久综合精品| 国产精选一区二区三区| 麻豆精品一区二区综合av| 性感美女久久精品| 亚洲成av人在线观看| 亚洲国产va精品久久久不卡综合| 国产女人水真多18毛片18精品视频| 日韩欧美国产精品一区| 日韩欧美一区在线观看| 成人激情开心网| 国产suv精品一区二区883| 成人综合激情网| 成人在线一区二区三区| 国产91清纯白嫩初高中在线观看 | 亚洲免费在线电影| 亚洲三级免费电影| 一区二区三区在线影院| 一区二区国产盗摄色噜噜| 天天操天天色综合| 蜜臀久久99精品久久久久宅男| 日韩电影一区二区三区| 激情丁香综合五月| 国产激情一区二区三区四区 | 欧美精品国产精品| 精品对白一区国产伦| 国产农村妇女毛片精品久久麻豆 | 日韩一区二区三区四区| 日韩欧美一级二级三级 | 成人午夜精品一区二区三区| 成人动漫一区二区| 欧美日韩国产大片| 精品动漫一区二区三区在线观看| 国产欧美一区二区精品仙草咪| 国产精品久久久久影视| 一二三区精品福利视频| 精品一二三四区| 成人av动漫网站| 777久久久精品| 国产精品沙发午睡系列990531| 亚洲精品ww久久久久久p站| 日韩精品成人一区二区在线| 国产99久久久国产精品潘金| 91黄视频在线| 欧美mv日韩mv国产网站app| 亚洲欧洲日韩一区二区三区| 亚洲成人黄色小说| 高清在线成人网| 欧美裸体一区二区三区| 欧美极品aⅴ影院| 精品国产免费视频| 亚洲图片欧美激情| 美女被吸乳得到大胸91| 不卡电影免费在线播放一区| 日韩免费看的电影| 亚洲国产欧美一区二区三区丁香婷| 国产成人亚洲综合色影视| 666欧美在线视频|