亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
\lefthead{Fomel}\righthead{Velocity continuation}\footer{SEP--92}\title{Velocity continuation and the anatomy of \\residual prestack time migration}\email{sergey@sep.stanford.edu}\author{Sergey Fomel}\maketitle\begin{abstract}   Velocity continuation is an imaginary continuous process of  seismic image transformation in the post-migration domain. It generalizes  the concepts of residual and cascaded migrations. Understanding the laws  of velocity continuation is crucially important for a successful application  of time migration velocity analysis.  These laws predict the changes  in the geometry and intensity of reflection events on migrated images with  the change of the migration velocity.  In this paper, I derive kinematic  and dynamic laws for the case of prestack residual migration from simple  geometric principles. The main theoretical result is a decomposition  of prestack velocity continuation into three different components  corresponding to residual normal moveout, residual dip moveout, and residual  zero-offset migration. I analyze the contribution and properties of each of  the three components separately. This theory forms the basis for  constructing efficient finite-difference and spectral algorithms for  time migration velocity analysis.\end{abstract}\section{Introduction}%%%%%%%%%%%%%%%%%%\begin{comment}Migration velocity analysis is a routine part of prestack timemigration applications. It serves both as a tool for velocityestimation \cite[]{FBR08-06-02240234} and as a tool for optimal stackingof migrated seismic sections and modeling zero-offset data for depthmigration \cite[]{GEO62-02-05680576}. In the most common form, migrationvelocity analysis amounts to residual moveout correction on CRP(common reflection point) gathers. However, in the case of dippingreflectors, this correction does not provide optimal focusing ofreflection energy, since it does not account for lateral movement ofreflectors caused by the change in migration velocity. In other words,different points on a stacking hyperbola in a CRP gather cancorrespond to different reflection points at the actual reflector. Thesituation is similar to that of the conventional NMO velocityanalysis, where the reflection point dispersal problem is usuallyovercome with the help of DMO \cite[]{FBR04-07-00070024,dmo}. Ananalogous correction is required for optimal focusing in thepost-migration domain. In this paper, I propose and test velocitycontinuation as a method of migration velocity analysis. The methodenhances the conventional residual moveout correction by taking intoaccount lateral movements of migrated reflection events.\end{comment}The conventional approach to seismic migration theory\cite[]{Claerbout.blackwell.85,Berkhout.mig.14A.1985} employs thedownward continuation concept. According to this concept, migrationextrapolates upgoing reflected waves, recorded on the surface, to theplace of their reflection to form an image of subsurfacestructures.%In order to understand the concept of velocity continuation, we need%to look at the fundamentals of seismic time migration. Post-stack time migration possesses peculiar properties, which canlead to a different viewpoint on migration.  One of the mostinteresting properties is an ability to decompose the time migrationprocedure into a cascade of two or more migrations with smallermigration velocities. This remarkable property is described by\cite{GEO50-01-01100126} as {\em residual migration}.\cite{GEO52-05-06180643} generalized the method of residualmigration to one of {\em cascaded migration.} Cascadingfinite-difference migrations overcomes the dip limitations ofconventional finite-difference algorithms \cite[]{GEO52-05-06180643};cascading Stolt-type {\em f-k} migrations expands their range ofvalidity to the case of a vertically varying velocity\cite[]{GEO53-07-08810893}. Further theoretical generalization setsthe number of migrations in a cascade to infinity, making each step inthe velocity space infinitesimally small. This leads to a partialdifferential equation in the time-midpoint-velocity space, discoveredby \cite{Claerbout.sep.48.79}. Claerbout's equation describes theprocess of {\em velocity continuation,} which fills the velocity spacein the same manner as a set of constant-velocity migrations. Slicingin the migration velocity space can serve as a method of velocityanalysis for migration with nonconstant velocity\cite[]{shurtleff,SEG-1984-S1.8,Fowler.sepphd.58, GEO57-01-00510059}.\new{The concept of velocity continuation was introduced in the earlierpublications} \cite[]{me,SEG-1997-1762}.  \cite{hubral} and\cite{GEO62-02-05890597} \new{use the term \emph{image waves} to describe asimilar idea.} \cite{adler} \new{generalizes it to the case of variablebackground velocities under the name \emph{Kirchhoff image propagation}.  Theimportance of this concept lies in its ability to predict changes in thegeometry and intensity of reflection events on seismic images with the changeof migration velocity. While conventional approaches to migration velocityanalysis methods take into account only vertical movement of reflectors}\cite[]{FBR08-06-02240234,GEO60-01-01420153}, \new{velocity continuation attempts to describe bothvertical and lateral movements, thus providing for optimal focusing invelocity analysis applications} \cite[]{SEG-2001-11071110,second}. In this paper, I describe the velocity continuation theory for the case ofprestack time migration, connecting it with the theory of prestack residualmigration \cite[]{Al-Yahya.sep.50.219,Etgen.sepphd.68,GEO61-02-06050607}. Byexploiting the mathematical theory of characteristics, a simplified kinematicderivation of the velocity continuation equation leads to a differentialequation with correct dynamic properties. %In the post-stack case, the%solution of the boundary-value problem, associated with this equation,%coincides precisely with the operators of Kirchoff migration, traditionally%derived from a completely different prospective.  In practice, one canaccomplish dynamic velocity continuation by integral, finite-difference, orspectral methods.\begin{comment}For practicalapplications, I chose the Fourier spectral method. The method has itslimitations \cite[]{Fomel.sep.97.sergey2}, but looks optimal in terms ofthe accuracy versus efficiency trade-off. Applying velocity continuation to migration velocity analysis involvesthe following steps: \begin{enumerate}\item prestack common-offset (and common-azimuth) migration - to  generate the initial data for continuation,\item velocity continuation with stacking across different offsets -  to transform the offset data dimension into the velocity dimension,\item picking the optimal velocity and slicing through the migrated  data volume - to generate an optimally focused image.\end{enumerate}The final part of this paper includes a demonstration of all threesteps on a simple two-dimensional dataset.\end{comment}The accompanying paper \cite[]{second} introduces one of the possiblenumerical implementations and demonstrates its application on a \new{field}data example.\new{The paper is organized into two main sections. First, I derive the kinematicsof velocity continuation from the first geometric principles. I identify threedistinctive terms, corresponding to zero-offset residual migration, residualnormal moveout, and residual dip moveout. Each term is analyzed separately toderive an analytical prediction for the changes in the geometry of traveltime curves (reflection events on migrated images) with the change ofmigration velocity. Second, the dynamic behavior of seismic images isdescribed with the help of partial differential equations and theirsolutions. Reconstruction of the dynamical counterparts for kinematicequations is not unique. However, I show that, with an appropriate selection ofadditional terms, the image waves corresponding to the velocity continuationprocess have the correct dynamic behavior. In particular, a special boundary value problem with the zero-offset velocity continuation equationproduces the solution identical to the conventional Kirchoff time migration.}\begin{comment}It is important to note that although the velocity continuation resultcould be achieved in principle by using prestack residual migration inKirchhoff \cite[]{Etgen.sepphd.68} or Stolt \cite[]{GEO61-02-06050607}formulation, the first is evidently inferior in efficiency, and thesecond is not convenient for velocity analysis across differentoffsets, because it mixes them in the Fourier domain.\end{comment}\section{KINEMATICS OF VELOCITY CONTINUATION}From the kinematic point of view, it is convenient to describe thereflector as a locally smooth surface $z = z(x)$, where $z$ is thedepth, and $x$ is the point on the surface ($x$ is a two-dimensionalvector in the 3-D problem). The image of the reflector obtained aftera common-offset prestack migration with a half-offset $h$ and aconstant velocity $v$ is the surface $z = z(x;h,v)$. Appendix Aprovides the derivations of the partial differential equationdescribing the image surface in the depth-midpoint-offset-velocityspace. The purpose of this section is to discuss the laws of kinematictransformations implied by the velocity continuation equation. Laterin this paper, I obtain dynamic analogs of the kinematicrelationships in order to describe the continuation of migratedsections in the velocity space.The kinematic equation for prestack velocity continuation, derived inAppendix A, takes the following form:\begin{equation}{{\partial \tau} \over {\partial v}} = v\,\tau\,\left({{\partial \tau} \over {\partial x}}\right)^2 +{{h^2} \over {v^3\,\tau}}\,- \frac{h^2 v}{\tau}\,\left({{\partial \tau} \over {\partial x}}\right)^2\,\left({{\partial \tau} \over {\partial h}}\right)^2\;.\label{eq:eikonal} \end{equation}Here $\tau$ denotes the one-way vertical traveltime $\left(\tau = {z\over v}\right)$. The right-hand side of equation (\ref{eq:eikonal})consists of three distinctive terms. Each has its own geophysical meaning. The first term is the only one remainingwhen the half-offset $h$ equals zero. This term corresponds to the procedure of{\em zero-offset residual migration}.  Setting the traveltime dip tozero eliminates the first and third terms, leaving the second,dip-independent one. One can associate the second term with the process of{\em residual normal moveout}. The third term is both dip- and offset-dependent. The process that it describes is {\em residual dipmoveout}. It is convenient to analyze each of the three processesseparately, evaluating their contributions to the cumulative processof prestack velocity continuation.\subsection{Kinematics of Zero-Offset Velocity Continuation}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The kinematic equation for zero-offset velocity continuation is\begin{equation}{{\partial \tau} \over {\partial v}} = v\,\tau\,\left({{\partial \tau} \over {\partial x}}\right)^2\;.\label{eq:POMeikonal} \end{equation}The typical boundary-value problem associated with it is to find thetraveltime surface $\tau_2(x_2)$ for a constant velocity $v_2$, given thetraveltime surface $\tau_1(x_1)$ at some other velocity $v_1$. Both surfacescorrespond to the reflector images obtained by time migrations with thespecified velocities.  When the migration velocity approaches zero, post-stacktime migration approaches the identity operator. Therefore, the case of $v_1 =0$ corresponds kinematically to the zero-offset (post-stack) migration, andthe case of $v_2 = 0$ corresponds to the zero-offset modeling (demigration).\new{The variable $x$ in equation~(\ref{eq:POMeikonal}) describes both the surfacemidpoint coordinate and the subsurface image coordinate. One of them iscontinuously transformed into the other in the velocity continuation process.}The appropriate mathematical method of solving the kinematicproblem posed above is the method of characteristics \cite[]{kurant2}. Thecharacteristics of equation (\ref{eq:POMeikonal}) are the trajectoriesfollowed by individual points of the reflector image in the velocitycontinuation process. These trajectories are called {\em velocity rays} \cite[]{me,them,adler}. Velocity rays are defined by the system of ordinarydifferential equations derived from (\ref{eq:POMeikonal}) according to the\new{Hamilton-Jacobi theory}:\begin{eqnarray}{{{dx} \over {dv}} = - 2\,v\,\tau\,\tau_x} & , &{{{d\tau} \over {dv}} = - \tau_v}\;,\label{eq:velray1} \\{{{d\tau_x} \over {dv}} = v\,\tau_x^3} & , &{{{d\tau_v} \over {dv}} = \left(\tau + v\,\tau_v\right)\,\tau_x^2}\;,\label{eq:velray2} \end{eqnarray}\new{where $\tau_x$ and $\tau_v$ are the phase-space parameters}.An additional constraint for $\tau_x$ and $\tau_v$follows from equation (\ref{eq:POMeikonal}), rewritten in the form\begin{equation}\tau_v = v\,\tau\,\tau_x^2\;. \label{eq:equiveikonal} \end{equation}%One can easily solve the system of equations (\ref{eq:velray1}) and%(\ref{eq:velray2}) by the classic mathematical methods for ordinary%differential equations. The general solution of the system ofequations~(\ref{eq:velray1}-\ref{eq:velray2}) takes theparametric form\begin{eqnarray}x(v) & = & A - C v^2\;,\quad\tau^2(v) = B - C^2\,v^2\;,\label{eq:velrayg1} \\ \tau_x(v) & = & {C \over {\tau(v)}}\;,\quad\tau_v(v) = {{C^2\,v} \over {\tau(v)}}\;,\label{eq:velrayg2} \end{eqnarray}where $A$, $B$, and $C$ are constant along each individual velocityray. These three constants are determined from the boundary conditionsas\begin{equation}A = x_1 + v_1^2\,\tau_1\,{{\partial \tau_1} \over {\partial x_1}} = x_0\;,\label{eq:a} \end{equation}\begin{equation}B = \tau_1^2\,\left(1 + v_1^2\,\left({{\partial \tau_1} \over {\partial x_1}}\right)^2\right) = \tau_0^2\;,\label{eq:b} \end{equation}\begin{equation}C = \tau_1\,{{\partial \tau_1} \over {\partial x_1}} = \tau_0\,{{\partial \tau_0} \over {\partial x_0}}\;,\label{eq:c} \end{equation}where $\tau_0$ and $x_0$ correspond to the zero velocity (unmigratedsection), while $\tau_1$ and $x_1$ correspond to the velocity $v_1$.% Equations (\ref{eq:a}), (\ref{eq:b}), and (\ref{eq:c}) have a clear%geometric meaning illustrated in Figure \ref{fig:vlczor}. Thesimple relationship between the midpoint derivative of the verticaltraveltime and the local dip angle $\alpha$ (appendix A),\begin{equation}{{\partial \tau} \over {\partial x}} = {{\tan{\alpha}} \over v}\;,\label{eq:dtaudx} \end{equation}shows that equations (\ref{eq:a}) and (\ref{eq:b}) are precisely equivalentto the evident geometric relationships (Figure~\ref{fig:vlczor})\begin{equation}x_1 + v_1\,\tau_1\,\tan{\alpha} = x_0\;,\;{\tau_1 \over {\cos{\alpha}}} = \tau_0\;.\label{eq:evident}\end{equation}Equation (\ref{eq:c}) states that the points on a velocity ray correspondto a single reflection point, constrained by the values of $\tau_1$,$v_1$, and $\alpha$.  As follows from equations (\ref{eq:velrayg1}), theprojection of a velocity ray to the time-midpoint plane has theparabolic shape $x(\tau) = A + (\tau^2 - B) / C$, which has beennoticed by \cite{GEO46-05-07170733}. On the depth-midpoint plane, thevelocity rays have the circular shape $z^2(x) = (A - x)\,B / C - (A -x)^2$, described by \cite{them} as ``Thales circles.''\inputdir{XFig}\sideplot{vlczor}{width=0.9\textwidth}{Zero-offset reflection in a  constant velocity medium (a scheme).}For an example of kinematic continuation by velocity rays, let usconsider the case of a point diffractor. If the diffractor location inthe subsurface is the point ${x_d,z_d}$, then the reflection traveltime atzero offset is defined from Pythagoras's theorem as the hyperboliccurve\begin{equation}\tau_0(x_0) = {{\sqrt{z_d^2 + (x_0 - x_d)^2}} \over v_d}\;,\label{eq:dift0}\end{equation}where $v_d$ is half of the actual velocity. Applying equations(\ref{eq:velrayg1}) produces the following mathematical expressionsfor the velocity rays:\begin{eqnarray}x(v) & = & x_d\,{v^2 \over v_d^2} + x_0\,\left(1 -  {v^2 \over v_d^2}\right)\;,\label{eq:difrayg1} \\ \tau^2(v) & = & \tau_d^2 + {{(x_0 - x_d)^2} \over v_d^2}\,\left(1 -  {v^2 \over v_d^2}\right)\;,\label{eq:difrayg2} \end{eqnarray}where $\tau_d = {z_d \over v_d}$.Eliminating $x_0$ from the system of equations (\ref{eq:difrayg1}) and(\ref{eq:difrayg2}) leads to the expression for the velocity continuation``wavefront'': \begin{equation}\tau(x)=\sqrt{\tau_d^2 + {{(x - x_d)^2} \over {v_d^2 - v^2}}}\;.\label{eq:diffront}\end{equation}For the case of a point diffractor, the wavefront corresponds preciselyto the summation path of the residual migration operator\cite[]{GEO50-01-01100126}. It has a hyperbolic shape when $v_d > v$(undermigration) and an elliptic shape when $v_d < v$(overmigration). The wavefront collapses to a point when the velocity$v$ approaches the actual effective velocity $v_d$. At zerovelocity, $v=0$, the wavefront takes the familiar form of the post-stack migrationhyperbolic summation path. The form of the velocity rays and wavefrontsis illustrated in the left plot of Figure \ref{fig:vlcvrs}.\inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产女同性恋一区二区| 884aa四虎影成人精品一区| 日本亚洲视频在线| 亚洲高清视频在线| 一区二区三区欧美日韩| 亚洲乱码国产乱码精品精98午夜| 国产欧美日韩久久| 久久久三级国产网站| 久久嫩草精品久久久精品| 欧美精品一区二区三区久久久| 91精品国产aⅴ一区二区| 欧美群妇大交群中文字幕| 欧美亚洲丝袜传媒另类| 欧美视频完全免费看| 91.成人天堂一区| 欧美日韩高清影院| 在线电影欧美成精品| 欧美精品第1页| 日韩精品一区二区三区四区| 精品国产成人在线影院| 久久久久久一级片| 国产精品乱码妇女bbbb| 综合网在线视频| 亚洲电影视频在线| 免费一级片91| 久久av资源站| 99re亚洲国产精品| 欧美性大战久久| 欧美tk—视频vk| 中文字幕不卡的av| 亚洲一区二区在线观看视频| 毛片av中文字幕一区二区| 国产精品一区久久久久| 91同城在线观看| 日韩欧美综合在线| 欧美激情一区三区| 亚洲国产精品自拍| 国产麻豆一精品一av一免费| 92精品国产成人观看免费| 7777精品伊人久久久大香线蕉| 亚洲精品一区二区在线观看| 国产精品久久三区| 美女www一区二区| av在线不卡观看免费观看| 777奇米成人网| 中文字幕在线观看一区| 日韩电影在线一区二区| 99re这里都是精品| www国产精品av| 亚洲国产精品久久久男人的天堂| 国产在线看一区| 欧美日韩视频在线第一区 | 久久九九99视频| 一区二区三区成人在线视频| 国产乱理伦片在线观看夜一区| 欧美又粗又大又爽| 国产精品嫩草99a| 麻豆国产精品官网| 欧美三级电影在线看| 国产精品久久久久7777按摩 | 国产色婷婷亚洲99精品小说| 亚洲国产精品一区二区久久 | 色国产综合视频| 国产天堂亚洲国产碰碰| 秋霞电影一区二区| 欧美日韩国产不卡| 亚洲无人区一区| 色综合久久久久综合| 中文字幕欧美日韩一区| 国产在线观看一区二区| 日韩欧美美女一区二区三区| 午夜av电影一区| 欧美丝袜自拍制服另类| 亚洲精品日韩一| 91美女片黄在线| 国产精品理伦片| 高清不卡在线观看| 久久精品日产第一区二区三区高清版| 男女男精品网站| 日韩亚洲欧美中文三级| 日韩精品一二三区| 欧美日韩视频专区在线播放| 一区二区三区免费网站| 色香蕉久久蜜桃| 一级特黄大欧美久久久| 在线日韩av片| 午夜欧美在线一二页| 欧美亚洲综合色| 亚洲1区2区3区4区| 欧美一区二区三区在线观看| 日韩av电影免费观看高清完整版在线观看 | 色婷婷综合久色| 日韩理论片在线| 欧美少妇bbb| 免费高清不卡av| 国产欧美日韩在线| 99精品国产99久久久久久白柏| 亚洲人成网站精品片在线观看| 在线精品视频免费观看| 视频一区免费在线观看| 日韩一级完整毛片| 国产精品一区二区三区99| 国产精品免费丝袜| 欧美吻胸吃奶大尺度电影| 麻豆国产欧美日韩综合精品二区 | 欧美日韩一区二区在线观看| 日韩成人一级大片| 国产午夜精品一区二区三区视频 | 欧美一级日韩不卡播放免费| 久久国产精品一区二区| 欧美激情一区二区在线| 欧美日韩国产在线观看| 韩国理伦片一区二区三区在线播放| 国产欧美日韩三级| 欧美日韩日日骚| 国产成人精品网址| 亚洲成av人片在www色猫咪| 欧美精品一区二区在线观看| 91亚洲精华国产精华精华液| 男女男精品视频网| 亚洲柠檬福利资源导航| 欧美va亚洲va香蕉在线| 日本久久精品电影| 韩国精品一区二区| 婷婷中文字幕一区三区| 国产精品乱码人人做人人爱| 欧美一级二级三级蜜桃| 91麻豆成人久久精品二区三区| 蜜臀av国产精品久久久久| 亚洲三级免费观看| 国产欧美一区二区三区沐欲| 欧美性大战久久久久久久蜜臀| 国产成人精品亚洲777人妖| 视频一区二区三区入口| 亚洲视频资源在线| 久久久久久一级片| 91精品国产欧美一区二区18| 91蝌蚪porny| 成人app下载| 国产成人在线视频网站| 久久97超碰国产精品超碰| 亚洲福利国产精品| 亚洲色图欧美偷拍| 国产视频在线观看一区二区三区| 91麻豆精品国产91久久久更新时间 | 国产三级精品在线| 欧美电视剧在线观看完整版| 欧美日本一区二区三区四区| 91碰在线视频| 97久久久精品综合88久久| 丁香天五香天堂综合| 国产一区二区三区黄视频| 免费高清不卡av| 久久精品国产亚洲a| 麻豆视频一区二区| 免费成人在线影院| 久久99久久久欧美国产| 麻豆精品视频在线观看免费| 五月天欧美精品| 秋霞影院一区二区| 日韩精品一级二级 | 91精品国产手机| 欧美久久久久久久久中文字幕| 欧美三级视频在线| 在线播放91灌醉迷j高跟美女| 欧美日韩国产精选| 欧美一级欧美三级在线观看| 欧美成人综合网站| 久久久久久久久久美女| 国产精品午夜电影| 亚洲色图一区二区| 亚洲va韩国va欧美va精品| 午夜精品爽啪视频| 奇米色777欧美一区二区| 乱中年女人伦av一区二区| 国产99久久久国产精品潘金网站| 成人毛片视频在线观看| 色香蕉成人二区免费| 日韩欧美在线不卡| 国产清纯美女被跳蛋高潮一区二区久久w | 亚洲男帅同性gay1069| 一区二区三区 在线观看视频| 亚洲精品成人精品456| 国产精品免费视频一区| 亚洲在线观看免费| 午夜视频在线观看一区二区三区 | 国产一区二区免费视频| 国产成人一级电影| 春色校园综合激情亚洲| 91黄色激情网站| 欧美日韩国产小视频在线观看| 欧美肥大bbwbbw高潮| 日韩女同互慰一区二区| 国产精品午夜在线观看| 亚洲激情中文1区| 视频一区二区三区在线| 99在线视频精品| 欧美性极品少妇| 精品国产制服丝袜高跟| 亚洲裸体xxx|