亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
\lefthead{Fomel}\righthead{Velocity continuation}\footer{SEP--92}\title{Velocity continuation and the anatomy of \\residual prestack time migration}\email{sergey@sep.stanford.edu}\author{Sergey Fomel}\maketitle\begin{abstract}   Velocity continuation is an imaginary continuous process of  seismic image transformation in the post-migration domain. It generalizes  the concepts of residual and cascaded migrations. Understanding the laws  of velocity continuation is crucially important for a successful application  of time migration velocity analysis.  These laws predict the changes  in the geometry and intensity of reflection events on migrated images with  the change of the migration velocity.  In this paper, I derive kinematic  and dynamic laws for the case of prestack residual migration from simple  geometric principles. The main theoretical result is a decomposition  of prestack velocity continuation into three different components  corresponding to residual normal moveout, residual dip moveout, and residual  zero-offset migration. I analyze the contribution and properties of each of  the three components separately. This theory forms the basis for  constructing efficient finite-difference and spectral algorithms for  time migration velocity analysis.\end{abstract}\section{Introduction}%%%%%%%%%%%%%%%%%%\begin{comment}Migration velocity analysis is a routine part of prestack timemigration applications. It serves both as a tool for velocityestimation \cite[]{FBR08-06-02240234} and as a tool for optimal stackingof migrated seismic sections and modeling zero-offset data for depthmigration \cite[]{GEO62-02-05680576}. In the most common form, migrationvelocity analysis amounts to residual moveout correction on CRP(common reflection point) gathers. However, in the case of dippingreflectors, this correction does not provide optimal focusing ofreflection energy, since it does not account for lateral movement ofreflectors caused by the change in migration velocity. In other words,different points on a stacking hyperbola in a CRP gather cancorrespond to different reflection points at the actual reflector. Thesituation is similar to that of the conventional NMO velocityanalysis, where the reflection point dispersal problem is usuallyovercome with the help of DMO \cite[]{FBR04-07-00070024,dmo}. Ananalogous correction is required for optimal focusing in thepost-migration domain. In this paper, I propose and test velocitycontinuation as a method of migration velocity analysis. The methodenhances the conventional residual moveout correction by taking intoaccount lateral movements of migrated reflection events.\end{comment}The conventional approach to seismic migration theory\cite[]{Claerbout.blackwell.85,Berkhout.mig.14A.1985} employs thedownward continuation concept. According to this concept, migrationextrapolates upgoing reflected waves, recorded on the surface, to theplace of their reflection to form an image of subsurfacestructures.%In order to understand the concept of velocity continuation, we need%to look at the fundamentals of seismic time migration. Post-stack time migration possesses peculiar properties, which canlead to a different viewpoint on migration.  One of the mostinteresting properties is an ability to decompose the time migrationprocedure into a cascade of two or more migrations with smallermigration velocities. This remarkable property is described by\cite{GEO50-01-01100126} as {\em residual migration}.\cite{GEO52-05-06180643} generalized the method of residualmigration to one of {\em cascaded migration.} Cascadingfinite-difference migrations overcomes the dip limitations ofconventional finite-difference algorithms \cite[]{GEO52-05-06180643};cascading Stolt-type {\em f-k} migrations expands their range ofvalidity to the case of a vertically varying velocity\cite[]{GEO53-07-08810893}. Further theoretical generalization setsthe number of migrations in a cascade to infinity, making each step inthe velocity space infinitesimally small. This leads to a partialdifferential equation in the time-midpoint-velocity space, discoveredby \cite{Claerbout.sep.48.79}. Claerbout's equation describes theprocess of {\em velocity continuation,} which fills the velocity spacein the same manner as a set of constant-velocity migrations. Slicingin the migration velocity space can serve as a method of velocityanalysis for migration with nonconstant velocity\cite[]{shurtleff,SEG-1984-S1.8,Fowler.sepphd.58, GEO57-01-00510059}.\new{The concept of velocity continuation was introduced in the earlierpublications} \cite[]{me,SEG-1997-1762}.  \cite{hubral} and\cite{GEO62-02-05890597} \new{use the term \emph{image waves} to describe asimilar idea.} \cite{adler} \new{generalizes it to the case of variablebackground velocities under the name \emph{Kirchhoff image propagation}.  Theimportance of this concept lies in its ability to predict changes in thegeometry and intensity of reflection events on seismic images with the changeof migration velocity. While conventional approaches to migration velocityanalysis methods take into account only vertical movement of reflectors}\cite[]{FBR08-06-02240234,GEO60-01-01420153}, \new{velocity continuation attempts to describe bothvertical and lateral movements, thus providing for optimal focusing invelocity analysis applications} \cite[]{SEG-2001-11071110,second}. In this paper, I describe the velocity continuation theory for the case ofprestack time migration, connecting it with the theory of prestack residualmigration \cite[]{Al-Yahya.sep.50.219,Etgen.sepphd.68,GEO61-02-06050607}. Byexploiting the mathematical theory of characteristics, a simplified kinematicderivation of the velocity continuation equation leads to a differentialequation with correct dynamic properties. %In the post-stack case, the%solution of the boundary-value problem, associated with this equation,%coincides precisely with the operators of Kirchoff migration, traditionally%derived from a completely different prospective.  In practice, one canaccomplish dynamic velocity continuation by integral, finite-difference, orspectral methods.\begin{comment}For practicalapplications, I chose the Fourier spectral method. The method has itslimitations \cite[]{Fomel.sep.97.sergey2}, but looks optimal in terms ofthe accuracy versus efficiency trade-off. Applying velocity continuation to migration velocity analysis involvesthe following steps: \begin{enumerate}\item prestack common-offset (and common-azimuth) migration - to  generate the initial data for continuation,\item velocity continuation with stacking across different offsets -  to transform the offset data dimension into the velocity dimension,\item picking the optimal velocity and slicing through the migrated  data volume - to generate an optimally focused image.\end{enumerate}The final part of this paper includes a demonstration of all threesteps on a simple two-dimensional dataset.\end{comment}The accompanying paper \cite[]{second} introduces one of the possiblenumerical implementations and demonstrates its application on a \new{field}data example.\new{The paper is organized into two main sections. First, I derive the kinematicsof velocity continuation from the first geometric principles. I identify threedistinctive terms, corresponding to zero-offset residual migration, residualnormal moveout, and residual dip moveout. Each term is analyzed separately toderive an analytical prediction for the changes in the geometry of traveltime curves (reflection events on migrated images) with the change ofmigration velocity. Second, the dynamic behavior of seismic images isdescribed with the help of partial differential equations and theirsolutions. Reconstruction of the dynamical counterparts for kinematicequations is not unique. However, I show that, with an appropriate selection ofadditional terms, the image waves corresponding to the velocity continuationprocess have the correct dynamic behavior. In particular, a special boundary value problem with the zero-offset velocity continuation equationproduces the solution identical to the conventional Kirchoff time migration.}\begin{comment}It is important to note that although the velocity continuation resultcould be achieved in principle by using prestack residual migration inKirchhoff \cite[]{Etgen.sepphd.68} or Stolt \cite[]{GEO61-02-06050607}formulation, the first is evidently inferior in efficiency, and thesecond is not convenient for velocity analysis across differentoffsets, because it mixes them in the Fourier domain.\end{comment}\section{KINEMATICS OF VELOCITY CONTINUATION}From the kinematic point of view, it is convenient to describe thereflector as a locally smooth surface $z = z(x)$, where $z$ is thedepth, and $x$ is the point on the surface ($x$ is a two-dimensionalvector in the 3-D problem). The image of the reflector obtained aftera common-offset prestack migration with a half-offset $h$ and aconstant velocity $v$ is the surface $z = z(x;h,v)$. Appendix Aprovides the derivations of the partial differential equationdescribing the image surface in the depth-midpoint-offset-velocityspace. The purpose of this section is to discuss the laws of kinematictransformations implied by the velocity continuation equation. Laterin this paper, I obtain dynamic analogs of the kinematicrelationships in order to describe the continuation of migratedsections in the velocity space.The kinematic equation for prestack velocity continuation, derived inAppendix A, takes the following form:\begin{equation}{{\partial \tau} \over {\partial v}} = v\,\tau\,\left({{\partial \tau} \over {\partial x}}\right)^2 +{{h^2} \over {v^3\,\tau}}\,- \frac{h^2 v}{\tau}\,\left({{\partial \tau} \over {\partial x}}\right)^2\,\left({{\partial \tau} \over {\partial h}}\right)^2\;.\label{eq:eikonal} \end{equation}Here $\tau$ denotes the one-way vertical traveltime $\left(\tau = {z\over v}\right)$. The right-hand side of equation (\ref{eq:eikonal})consists of three distinctive terms. Each has its own geophysical meaning. The first term is the only one remainingwhen the half-offset $h$ equals zero. This term corresponds to the procedure of{\em zero-offset residual migration}.  Setting the traveltime dip tozero eliminates the first and third terms, leaving the second,dip-independent one. One can associate the second term with the process of{\em residual normal moveout}. The third term is both dip- and offset-dependent. The process that it describes is {\em residual dipmoveout}. It is convenient to analyze each of the three processesseparately, evaluating their contributions to the cumulative processof prestack velocity continuation.\subsection{Kinematics of Zero-Offset Velocity Continuation}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The kinematic equation for zero-offset velocity continuation is\begin{equation}{{\partial \tau} \over {\partial v}} = v\,\tau\,\left({{\partial \tau} \over {\partial x}}\right)^2\;.\label{eq:POMeikonal} \end{equation}The typical boundary-value problem associated with it is to find thetraveltime surface $\tau_2(x_2)$ for a constant velocity $v_2$, given thetraveltime surface $\tau_1(x_1)$ at some other velocity $v_1$. Both surfacescorrespond to the reflector images obtained by time migrations with thespecified velocities.  When the migration velocity approaches zero, post-stacktime migration approaches the identity operator. Therefore, the case of $v_1 =0$ corresponds kinematically to the zero-offset (post-stack) migration, andthe case of $v_2 = 0$ corresponds to the zero-offset modeling (demigration).\new{The variable $x$ in equation~(\ref{eq:POMeikonal}) describes both the surfacemidpoint coordinate and the subsurface image coordinate. One of them iscontinuously transformed into the other in the velocity continuation process.}The appropriate mathematical method of solving the kinematicproblem posed above is the method of characteristics \cite[]{kurant2}. Thecharacteristics of equation (\ref{eq:POMeikonal}) are the trajectoriesfollowed by individual points of the reflector image in the velocitycontinuation process. These trajectories are called {\em velocity rays} \cite[]{me,them,adler}. Velocity rays are defined by the system of ordinarydifferential equations derived from (\ref{eq:POMeikonal}) according to the\new{Hamilton-Jacobi theory}:\begin{eqnarray}{{{dx} \over {dv}} = - 2\,v\,\tau\,\tau_x} & , &{{{d\tau} \over {dv}} = - \tau_v}\;,\label{eq:velray1} \\{{{d\tau_x} \over {dv}} = v\,\tau_x^3} & , &{{{d\tau_v} \over {dv}} = \left(\tau + v\,\tau_v\right)\,\tau_x^2}\;,\label{eq:velray2} \end{eqnarray}\new{where $\tau_x$ and $\tau_v$ are the phase-space parameters}.An additional constraint for $\tau_x$ and $\tau_v$follows from equation (\ref{eq:POMeikonal}), rewritten in the form\begin{equation}\tau_v = v\,\tau\,\tau_x^2\;. \label{eq:equiveikonal} \end{equation}%One can easily solve the system of equations (\ref{eq:velray1}) and%(\ref{eq:velray2}) by the classic mathematical methods for ordinary%differential equations. The general solution of the system ofequations~(\ref{eq:velray1}-\ref{eq:velray2}) takes theparametric form\begin{eqnarray}x(v) & = & A - C v^2\;,\quad\tau^2(v) = B - C^2\,v^2\;,\label{eq:velrayg1} \\ \tau_x(v) & = & {C \over {\tau(v)}}\;,\quad\tau_v(v) = {{C^2\,v} \over {\tau(v)}}\;,\label{eq:velrayg2} \end{eqnarray}where $A$, $B$, and $C$ are constant along each individual velocityray. These three constants are determined from the boundary conditionsas\begin{equation}A = x_1 + v_1^2\,\tau_1\,{{\partial \tau_1} \over {\partial x_1}} = x_0\;,\label{eq:a} \end{equation}\begin{equation}B = \tau_1^2\,\left(1 + v_1^2\,\left({{\partial \tau_1} \over {\partial x_1}}\right)^2\right) = \tau_0^2\;,\label{eq:b} \end{equation}\begin{equation}C = \tau_1\,{{\partial \tau_1} \over {\partial x_1}} = \tau_0\,{{\partial \tau_0} \over {\partial x_0}}\;,\label{eq:c} \end{equation}where $\tau_0$ and $x_0$ correspond to the zero velocity (unmigratedsection), while $\tau_1$ and $x_1$ correspond to the velocity $v_1$.% Equations (\ref{eq:a}), (\ref{eq:b}), and (\ref{eq:c}) have a clear%geometric meaning illustrated in Figure \ref{fig:vlczor}. Thesimple relationship between the midpoint derivative of the verticaltraveltime and the local dip angle $\alpha$ (appendix A),\begin{equation}{{\partial \tau} \over {\partial x}} = {{\tan{\alpha}} \over v}\;,\label{eq:dtaudx} \end{equation}shows that equations (\ref{eq:a}) and (\ref{eq:b}) are precisely equivalentto the evident geometric relationships (Figure~\ref{fig:vlczor})\begin{equation}x_1 + v_1\,\tau_1\,\tan{\alpha} = x_0\;,\;{\tau_1 \over {\cos{\alpha}}} = \tau_0\;.\label{eq:evident}\end{equation}Equation (\ref{eq:c}) states that the points on a velocity ray correspondto a single reflection point, constrained by the values of $\tau_1$,$v_1$, and $\alpha$.  As follows from equations (\ref{eq:velrayg1}), theprojection of a velocity ray to the time-midpoint plane has theparabolic shape $x(\tau) = A + (\tau^2 - B) / C$, which has beennoticed by \cite{GEO46-05-07170733}. On the depth-midpoint plane, thevelocity rays have the circular shape $z^2(x) = (A - x)\,B / C - (A -x)^2$, described by \cite{them} as ``Thales circles.''\inputdir{XFig}\sideplot{vlczor}{width=0.9\textwidth}{Zero-offset reflection in a  constant velocity medium (a scheme).}For an example of kinematic continuation by velocity rays, let usconsider the case of a point diffractor. If the diffractor location inthe subsurface is the point ${x_d,z_d}$, then the reflection traveltime atzero offset is defined from Pythagoras's theorem as the hyperboliccurve\begin{equation}\tau_0(x_0) = {{\sqrt{z_d^2 + (x_0 - x_d)^2}} \over v_d}\;,\label{eq:dift0}\end{equation}where $v_d$ is half of the actual velocity. Applying equations(\ref{eq:velrayg1}) produces the following mathematical expressionsfor the velocity rays:\begin{eqnarray}x(v) & = & x_d\,{v^2 \over v_d^2} + x_0\,\left(1 -  {v^2 \over v_d^2}\right)\;,\label{eq:difrayg1} \\ \tau^2(v) & = & \tau_d^2 + {{(x_0 - x_d)^2} \over v_d^2}\,\left(1 -  {v^2 \over v_d^2}\right)\;,\label{eq:difrayg2} \end{eqnarray}where $\tau_d = {z_d \over v_d}$.Eliminating $x_0$ from the system of equations (\ref{eq:difrayg1}) and(\ref{eq:difrayg2}) leads to the expression for the velocity continuation``wavefront'': \begin{equation}\tau(x)=\sqrt{\tau_d^2 + {{(x - x_d)^2} \over {v_d^2 - v^2}}}\;.\label{eq:diffront}\end{equation}For the case of a point diffractor, the wavefront corresponds preciselyto the summation path of the residual migration operator\cite[]{GEO50-01-01100126}. It has a hyperbolic shape when $v_d > v$(undermigration) and an elliptic shape when $v_d < v$(overmigration). The wavefront collapses to a point when the velocity$v$ approaches the actual effective velocity $v_d$. At zerovelocity, $v=0$, the wavefront takes the familiar form of the post-stack migrationhyperbolic summation path. The form of the velocity rays and wavefrontsis illustrated in the left plot of Figure \ref{fig:vlcvrs}.\inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲午夜影视影院在线观看| 国模娜娜一区二区三区| 亚洲国产日韩综合久久精品| 久久99国产乱子伦精品免费| 99久久国产免费看| 久久久久久久久97黄色工厂| 午夜亚洲福利老司机| 99久久综合色| 国产免费成人在线视频| 精品在线观看视频| 欧美另类高清zo欧美| ...xxx性欧美| 成人免费观看av| 国产香蕉久久精品综合网| 青青国产91久久久久久| 欧美日韩在线三级| 一区二区三区在线观看国产| 成人a免费在线看| 国产精品色婷婷久久58| 国产黄色91视频| 久久精品日产第一区二区三区高清版| 日韩中文字幕av电影| 欧美综合久久久| 一区二区三区精品在线| 91视视频在线观看入口直接观看www | 国产综合色视频| 欧美一激情一区二区三区| 水蜜桃久久夜色精品一区的特点| 99精品久久久久久| 中文字幕一区二区在线播放 | 中文字幕免费不卡| 国产在线日韩欧美| 国产日韩欧美综合在线| 国产伦精品一区二区三区视频青涩| 日韩免费观看2025年上映的电影| 爽好久久久欧美精品| 日韩西西人体444www| 麻豆久久久久久| 久久久久久电影| 成人精品gif动图一区| 国产精品热久久久久夜色精品三区| 成人综合在线视频| 亚洲人成网站精品片在线观看| 色94色欧美sute亚洲线路一久| 尤物在线观看一区| 欧美妇女性影城| 另类小说色综合网站| 国产亚洲精品aa| 91小视频在线免费看| 亚洲尤物视频在线| 日韩精品一区二区三区老鸭窝| 另类小说图片综合网| 国产精品色哟哟网站| 91精品福利视频| 午夜精品久久久久久久99水蜜桃| 久久久久亚洲综合| gogogo免费视频观看亚洲一| 一区二区三区国产豹纹内裤在线| 欧美日韩高清一区二区不卡 | 69堂成人精品免费视频| 国产综合久久久久影院| 日韩理论片在线| 欧美精品乱码久久久久久| 国产精品一级在线| 一区二区三区四区蜜桃 | 欧美老年两性高潮| 中文字幕日韩av资源站| 亚洲黄色小视频| 久久电影网电视剧免费观看| 久久久亚洲午夜电影| 五月天中文字幕一区二区| 日韩午夜小视频| 国产成人一区二区精品非洲| 一区二区三区在线免费视频 | 蜜臀av一区二区在线观看| 无码av免费一区二区三区试看| 一区二区激情视频| 亚洲成人精品在线观看| 亚洲成人三级小说| 天堂午夜影视日韩欧美一区二区| 亚洲成人免费在线观看| 日韩高清在线不卡| 美女视频第一区二区三区免费观看网站| 丝袜美腿一区二区三区| 日韩国产欧美在线播放| 美腿丝袜亚洲综合| 国产一区二区导航在线播放| 国产精品一卡二| 99精品国产91久久久久久| 日本韩国欧美三级| 欧美午夜电影在线播放| 在线电影一区二区三区| 日韩一级大片在线| 久久久99免费| 成人欧美一区二区三区| 亚洲国产成人va在线观看天堂| 日韩电影免费一区| 国产一区二区三区四区在线观看| 国产精品99久久不卡二区| 菠萝蜜视频在线观看一区| 欧美伊人久久久久久午夜久久久久| 欧美日韩在线亚洲一区蜜芽| 精品国产乱码久久久久久图片| 国产欧美一区二区在线观看| 亚洲精品视频在线看| 日韩国产欧美在线视频| 懂色一区二区三区免费观看| 91日韩精品一区| 欧美一区二区视频网站| 国产日产亚洲精品系列| 一区二区三区在线观看国产| 久久99久久精品| 99精品视频在线播放观看| 欧美日韩国产bt| 中文字幕精品—区二区四季| 亚洲影视在线播放| 国产高清不卡二三区| 欧美性生活大片视频| 久久综合色婷婷| 亚洲香蕉伊在人在线观| 国产成人精品1024| 欧美精选午夜久久久乱码6080| 久久久www成人免费无遮挡大片| 一区二区三区国产精品| 国产乱子伦视频一区二区三区 | 高清在线成人网| 欧美性xxxxxx少妇| 亚洲国产成人一区二区三区| 五月综合激情日本mⅴ| 99在线精品一区二区三区| 日韩午夜av电影| 粉嫩绯色av一区二区在线观看| 精品视频在线免费观看| 亚洲国产精华液网站w| 麻豆精品国产91久久久久久| 在线视频综合导航| 亚洲欧洲精品一区二区三区不卡 | 夜夜爽夜夜爽精品视频| 国产精品一色哟哟哟| 欧美人与性动xxxx| 亚洲精选一二三| 风间由美中文字幕在线看视频国产欧美| 制服丝袜日韩国产| 玉足女爽爽91| 99久久精品国产毛片| 欧美激情中文不卡| 国产自产高清不卡| 91精品国产乱| 亚洲va在线va天堂| 欧美伊人久久久久久午夜久久久久| 国产精品久久久一区麻豆最新章节| 麻豆久久一区二区| 日韩一区二区免费在线观看| 五月天激情综合| 欧洲av一区二区嗯嗯嗯啊| 亚洲精品视频一区二区| 99在线精品视频| 日韩一区在线看| 99久久综合精品| 中文字幕在线不卡视频| 成人午夜在线播放| 26uuu色噜噜精品一区| 激情综合色播五月| 欧美电视剧免费全集观看| 麻豆精品久久精品色综合| 日韩欧美中文字幕公布| 日本欧美久久久久免费播放网| 7777精品伊人久久久大香线蕉的| 亚洲午夜久久久久久久久电影网| 91成人免费在线视频| 亚洲一区二区三区免费视频| 欧美性猛交xxxxxxxx| 丝袜诱惑制服诱惑色一区在线观看| 欧美性欧美巨大黑白大战| 日韩高清国产一区在线| 日韩午夜激情电影| 国产高清无密码一区二区三区| 欧美激情一区二区在线| 99久久精品99国产精品| 亚洲自拍欧美精品| 日韩免费性生活视频播放| 韩国女主播一区二区三区| 国产蜜臀97一区二区三区| 91蝌蚪porny九色| 亚洲电影视频在线| 欧美一区二区久久久| 国产老妇另类xxxxx| 国产精品人成在线观看免费| 色成人在线视频| 日韩国产欧美在线播放| 国产三级一区二区三区| av动漫一区二区| 亚洲国产一区二区视频| 日韩欧美一区二区在线视频| 国产在线观看一区二区| 亚洲视频在线观看一区| 91精品国产综合久久久久久久久久| 理论电影国产精品| 国产精品超碰97尤物18| 欧美精品在线观看播放|