亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
and the function $\tau$ satisfies the kinematic equation(\ref{eq:POMeikonal}). Substituting approximation (\ref{eq:WKB}) intothe dynamic velocity continuation equation (\ref{eq:POMequation}),collecting the leading-order terms, and neglecting the $F$ functionleads to the partial differential equation for amplitude transport:\begin{equation}{\partial A \over \partial v} = v\,\tau\,\left(2\,{\partial A \over \partial x}\,{\partial \tau \over \partial x} + A\,{\partial^2 \tau \over \partial x^2}\right)\;.\label{eq:PAMPequation} \end{equation}The general solution of equation (\ref{eq:PAMPequation}) follows from thetheory of characteristics. It takes the form\begin{equation}A(x,v) = A(x_0,0)\,\exp{\left(\int_0^{v}\,u\,\tau(x,u)\,{\partial^2 \tau(x,u) \over \partial x^2}\,du\right)}\;,\label{eq:PAMPsolution} \end{equation}where the integral corresponds to thecurvilinear integration along the corresponding velocity ray, \new{and $x_0$corresponds to thestarting point of the ray.}In the case of a plane dipping reflector, the image of the reflector remainsplane in the velocity continuation process. Therefore, the secondtraveltime derivative ${\partial^2 \tau(x,u) \over \partial x^2}$ in(\ref{eq:PAMPsolution}) equals zero, and the exponential is equal toone. This means that the amplitude of the image does not change withthe velocity along the velocity rays. This fact does not agree with thetheory of conventional post-stack migration, which suggestsdownscaling the image by the ``cosine'' factor $\tau_0 \over\tau$ \cite[]{GEO46-05-07170733,Levin.sep.48.147}. The simplest way toinclude the cosine factor in the velocity continuation equation is toset the function $F$ to be ${1 \over t}\,{\partial P \over \partialv}$. The resulting differential equation\begin{equation}{{\partial^2 P} \over {\partial v\, \partial t}} +v\,t\,{{\partial^2 P} \over {\partial x^2}} +{1 \over t}\,{\partial P \over \partial v} = 0\label{eq:POMequation2} \end{equation}has the amplitude transport\begin{equation}A(x,v) = {\tau_0 \over \tau}\,A(x_0,0)\,\exp{\left(\int_0^{v}\,u\,\tau(x,u)\,{\partial^2 \tau(x,u) \over \partial x^2}\,du\right)}\;,\label{eq:PAMPsolution2} \end{equation}corresponding to the differential equation\begin{equation}{\partial A \over \partial v} = v\,\tau\,\left(2\,{\partial A \over \partial x}\,{\partial \tau \over \partial x} + A\,{\partial^2 \tau \over \partial x^2}\right) - A\,{1 \over \tau}\,{\partial \tau \over \partial v}\;.\label{eq:PAMPequation2} \end{equation}Appendix C proves that the time-and-space solution of the dynamicvelocity continuation equation (\ref{eq:POMequation2}) coincides with theconventional Kirchhoff migration operator.\begin{comment}The finite-difference implementation of zero-offset velocitycontinuation resembles the implementation of Claerbout's15-degree equation in a retarded coordinate system\cite[]{Claerbout.blackwell.76}. This implementation is discussed inmore detail in Appendix C. \end{comment}\subsection{Dynamics of Residual NMO}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%According to the theory of characteristics, described in the beginningof this section, the kinematic residual NMO equation(\ref{eq:ResNMOeikonal}) corresponds to the dynamic equation of the form\begin{equation}{{\partial P} \over {\partial v}} + {{h^2} \over {v^3\,t}}\,{{\partial P} \over {\partial t}} + F(h,t,v,P) = 0\label{eq:ResNMOdyn} \end{equation}\new{with the undetermined function $F$. In the case of $F=0$}, the general solutionis easily found to be\begin{equation}P(t,h,v) = \phi\left(t^2 + {h^2 \over v^2}\right)\;.\label{eq:ResNMOsol} \end{equation}where $\phi$ is an arbitrary smooth function.The combination of dynamic equations (\ref{eq:ResNMOdyn}) and(\ref{eq:POMequation2}) leads to an approximate prestack velocitycontinuation with the residual DMO effect neglected. To accomplish thecombination, one can simply add the term ${{h^2} \over{v^3\,t}}\,{{\partial^2 P} \over {\partial t^2}}$ fromequation~(\ref{eq:ResNMOdyn}) to the left-handside of equation (\ref{eq:POMequation2}). This addition changes thekinematics of velocity continuation, but does not change the amplitudeproperties embedded in the transport equation (\ref{eq:PAMPsolution2}).\cite{GEO38-04-06350642} and \cite{Hale.sepphd.36} \new{advocate using  an amplitude correction term in the NMO step. This term can be  easily added by selecting an appropriate function $F$ in  equation~(\ref{eq:ResNMOdyn}). The choice  $F=\frac{h^2}{v^3\,t^2}\,P$ results in the equation}\begin{equation}{{\partial P} \over {\partial v}} + {{h^2} \over {v^3\,t^2}}\,\left(t\,{{\partial P} \over {\partial t}} + P\right) = 0\label{eq:ResNMOdyn2} \end{equation}with the general solution\begin{equation}P(t,h,v) = \frac{1}{t}\,\phi\left(t^2 + {h^2 \over v^2}\right)\;,\label{eq:ResNMOsol} \end{equation}\new{which has the Dunkin-Levin amplitude correction term.}\subsection{Dynamics of Residual DMO}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The case of residual DMO complicates the building of a dynamicequation because of the essential nonlinearity of the kinematicequation (\ref{eq:ResDMOeikonal}). One possible way to linearize theproblem is to increase the order of the equation. In this case, theresultant dynamic equation would include a term that has thesecond-order derivative with respect to velocity $v$. Such an equationdescribes two different modes of wave propagation and requiresadditional initial conditions to separate them. Another possible wayto linearize equation (\ref{eq:ResDMOeikonal}) is to approximate it atsmall dip angles.%For example, one%can obtain a recursively accurate approximation by a continued%fraction expansion of the square root in equation (\ref{eq:ResDMOeikonal}),%analogously to Muir's method in conventional finite-difference%migration \cite[]{Claerbout.blackwell.85}. In this case, the dynamicequation would contain only the first-order derivative with respect tothe velocity and high-order derivatives with respect to the otherparameters. The third, and probably the most attractive, method is tochange the domain of consideration. For example, one could switch fromthe common-offset domain to the domain of offset dip. Thismethod implies a transformation similar to slant stacking ofcommon-midpoint gathers in the post-migration domain in order toobtain the local offset dip information. Equation (\ref{eq:ResDMOeikonal})transforms, with the help of the results from Appendix A, to the form\begin{equation}v^3\,{{\partial \tau} \over {\partial v}} = {{\tau\,\sin^2{\theta}} \over{\cos^2{\alpha} - \sin^2{\theta}}}\;,\label{eq:noh} \end{equation}with\begin{equation}\cos^2{\alpha} = \left(1 + v^2 \,\left({{\partial \tau} \over {\partial x}}\right)^2\right)^{-1}\;,\label{eq:cos2a} \end{equation}and\begin{equation}\sin^2{\alpha} = v^2\,\left({{\partial \tau} \over {\partial h}}\right)^2\,\left(1 + v^2 \,\left({{\partial \tau} \over {\partial h}}\right)^2\right)^{-1}\;.\label{eq:sin2g} \end{equation}For a constant offset dip $\tan{\theta} = v\,{{\partial \tau} \over{\partial h}}$, the dynamic analog of equation (\ref{eq:noh}) is thethird-order partial differential equation\begin{equation}v\,  \cot^2{\theta}\,{{\partial^3 P} \over {\partial t^2\, \partial v}} -v^3\,{{\partial^3 P} \over {\partial x^2\, \partial v}}+ t\,{{\partial^3 P} \over {\partial t^2\, \partial v}} +v^2\,t\,{{\partial^3 P} \over {\partial x^2\, \partial t}} = 0\;.\label{eq:ResDMOdyn} \end{equation}Equation (\ref{eq:ResDMOdyn}) does not strictly comply with the theory ofsecond-order linear differential equations. Its properties andpractical applicability require further research.\section{Conclusions}%%%%%%%%%%%%%%%%%%%%%I have derived kinematic and dynamic equations for residual time migrationin the form of a continuous velocity continuation process. Thisderivation explicitly decomposes prestackvelocity continuation into three parts corresponding tozero-offset continuation, residual NMO, and residual DMO. These threeparts can be treated separately both for simplicity of theoreticalanalysis and for practical purposes. It is important to note that inthe case of a three-dimensional migration, all three components ofvelocity continuation have different dimensionality. Zero-offsetcontinuation is fully 3-D. It can be split into two 2-D continuationsin the in- and cross-line directions. Residual DMO is atwo-dimensional common-azimuth process. Residual NMO is a 1-Dsingle-trace procedure.The dynamic properties of zero-offset velocity continuation areprecisely equivalent to those of conventional post-stack migrationmethods such as Kirchhoff migration. Moreover, the Kirchhoff migrationoperator coincides with the integral solution of the velocitycontinuation differential equation for continuation from the zerovelocity plane.This rigorous theory of velocity continuation gives us new insights into themethods of prestack migration velocity analysis. Extensions to the case ofdepth migration in a variable velocity background are developed by\cite{hong} and \cite{adler}. \new{A practical application of  velocity continuation to migration velocity analysis is demonstrated in the  companion paper} \cite[]{second}, \new{where the general theory is used to  design efficient and practical algorithms.}\section{Acknowledgments}%%%%%%%%%%%%%%%%%%%%%%%%%This work was completed when the author was a member of the StanfordExploration Project (SEP) at Stanford University. The financialsupport was provided by the SEP sponsors.I thank Bee Bednar, Biondo Biondi, Jon Claerbout, Sergey Goldin, Bill Harlan,David Lumley, and Bill Symes for useful and stimulating discussions.\new{Paul Fowler, Hugh Geiger, Samuel Gray, and one anonymous reviewer  provided valuable suggestions that improved the quality of the paper.}\bibliographystyle{seg}\bibliography{SEP2,paper,spec,velcon,SEG}\append{DERIVING THE KINEMATIC EQUATIONS}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The main goal of this appendix is to derive the partial differentialequation describing the image surface in adepth-midpoint-offset-velocity space.\inputdir{XFig}\sideplot{vlcray}{width=0.9\textwidth}{Reflection rays in a constant  velocity medium (a scheme).}The derivation starts with observing a simple geometry of reflectionin a constant-velocity medium, shown in Figure \ref{fig:vlcray}. Thewell-known equations for the apparent slowness\begin{equation}{{\partial t} \over {\partial s}} \,=\,{ {\sin{\alpha_1}} \over {v}}\;,\label{eq:snell1}\end{equation}\begin{equation}{{\partial t} \over {\partial r}} \,=\, {{\sin{\alpha_2}} \over {v}}  \label{eq:snell2}\end{equation} relate the first-order traveltime derivatives for the reflected wavesto the emergence angles of the incident and reflected rays. Here $s$stands for the source location at the surface, $r$ is the receiverlocation, $t$ is the reflection traveltime, $v$ is the constantvelocity, and $\alpha_1$ and $\alpha_2$ are the angles shown in Figure\ref{fig:vlcray}. Considering the traveltime derivative with respect tothe depth of the observation surface $z$ shows that thecontributions of the two branches of the reflected ray, addedtogether, form the equation\begin{equation}- {{\partial t} \over {\partial z}} \,=\,{{\cos{\alpha_1}} \over {v}} +{{\cos{\alpha_2}} \over {v}}\;.\label{eq:snell3}\end{equation}It is worth mentioning that the elimination of angles from equations(\ref{eq:snell1}), (\ref{eq:snell2}), and (\ref{eq:snell3}) leads tothe famous {\em double-square-root equation,}\begin{equation}- v\,{{\partial t} \over {\partial z}} \,=\,\sqrt{1 -  v^2\,\left({{\partial t} \over {\partial s}}\right)^2} +\sqrt{1 -  v^2\,\left({{\partial t} \over {\partial r}}\right)^2}\;,\label{eq:DSR}\end{equation}published in the Russian literature by \cite{alekseev} and commonlyused in the form of a pseudo-differential dispersion relation\cite[]{Clayton.sep.14.21,Claerbout.blackwell.85} for prestackmigration \cite[]{Yilmaz.sepphd.18,Popovici.sep.84.53}. Consideredlocally, equation (\ref{eq:DSR}) is independent of the constant velocityassumption and enables \new{recursive} prestack downwardcontinuation of reflected waves in heterogeneous \new{isotropic}media.Introducing the midpoint coordinate $x = {{s+ r} \over 2}$ and half-offset$h = {{r - s} \over 2}$, one can apply the chain rule and elementarytrigonometric equalities to formulas (\ref{eq:snell1}) and(\ref{eq:snell2}) and transform these formulas to \begin{equation}{{\partial t} \over {\partial x}} \,=\, {{\partial t} \over {\partial s}} + {{\partial t} \over {\partial r}} \,=\, { {2 \sin{\alpha}\,\cos{\theta}} \over {v}}\;,\label{eq:snells1}\end{equation}\begin{equation}{{\partial t} \over {\partial h}} \,=\,{{\partial t} \over {\partial r}} - {{\partial t} \over {\partial s}} \,=\, { {2 \cos{\alpha}\,\sin{\theta}} \over {v}} \;,\label{eq:snells2}\end{equation}where $\alpha = {{\alpha_1 + \alpha_2} \over 2}$ is the dip angle, and$\theta = {{\alpha_2 - \alpha_1} \over 2}$ is the reflection angle\cite[]{Clayton.sep.14.21,Claerbout.blackwell.85}. Equation(\ref{eq:snell3}) transforms analogously to\begin{equation}- {{\partial t} \over {\partial z}} \,=\,{{2 \cos{\alpha} \cos{\theta}} \over {v}}\;. \label{eq:snells3}\end{equation}This form of equation (\ref{eq:snell3}) is used to describe the stretchingfactor of the waveform distortion in depth migration \cite[]{Tygel}.Dividing (\ref{eq:snells1}) and (\ref{eq:snells2}) by(\ref{eq:snells3}) leads to\begin{equation}{{\partial z} \over {\partial x}} \,=\,- \tan{\alpha}\;, \label{eq:snellz1}\end{equation}\begin{equation}{{\partial z} \over {\partial h}} \,=\,- \tan{\theta}\;.\label{eq:snellz2}\end{equation}Equation~(\ref{eq:snellz2}) is the basis of the angle-gather construction of\cite{sandf}.Substituting formulas (\ref{eq:snellz1}) and (\ref{eq:snellz2}) into equation(\ref{eq:snells3}) yields yet another form of the double-square-root equation:\begin{equation}- {{\partial t} \over {\partial z}} \,=\, {2 \over {v}}\,\left[\sqrt{1 + \left({\partial z} \over {\partial x}\right)^2}\,\sqrt{1 + \left({\partial z} \over {\partial h}\right)^2}\right]^{-1}\;, \label{eq:snellz3}\end{equation}which is analogous to the dispersion relationship of Stolt prestackmigration \cite[]{GEO43-01-00230048}. The law of sines in the triangle formed by the incident and reflectedray leads to the explicit relationship between the traveltime and theoffset:\begin{equation}v\,t = 2\,h\,  {{\cos{\alpha_1}+ \cos{\alpha_2}} \over\sin{\left(\alpha_2-\alpha_1\right)}} = 2\,h\,{\cos{\alpha} \over\sin{\theta}} \;.\label{eq:length} \end{equation}An algebraic combination of formulas (\ref{eq:length}), (\ref{eq:snells1}), and(\ref{eq:snells2}) forms the basic kinematic equation of the offsetcontinuation theory \cite[]{ofcon}:\begin{equation}{{\partial t} \over {\partial h}} \,\left(t^2 + {{4\,h^2} \over {v^2}}\right)\,=\,

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩高清一区二区| 久久99精品久久久久久久久久久久| 亚洲图片欧美综合| 韩国视频一区二区| 欧美日韩国产在线观看| 国产午夜精品福利| 免费av成人在线| 色综合天天视频在线观看| 精品乱人伦一区二区三区| 亚洲成人三级小说| 色香色香欲天天天影视综合网| 日韩欧美国产系列| 一区二区三区中文字幕| 菠萝蜜视频在线观看一区| 欧美videos中文字幕| 亚洲国产日韩综合久久精品| 一本一本大道香蕉久在线精品| 国产亚洲婷婷免费| 黄色小说综合网站| 日韩精品最新网址| 另类小说一区二区三区| 欧美高清视频一二三区| 亚洲午夜精品在线| 色综合天天综合狠狠| 国产精品午夜在线| 懂色av中文字幕一区二区三区| 精品久久国产字幕高潮| 蜜桃视频在线观看一区二区| 欧美日产在线观看| 日韩在线卡一卡二| 欧美精品日韩综合在线| 首页综合国产亚洲丝袜| 欧美性感一区二区三区| 一区二区国产视频| 欧美制服丝袜第一页| 亚洲久本草在线中文字幕| 99久久国产综合精品色伊| 中文字幕日韩精品一区| 国产99久久久精品| 亚洲免费三区一区二区| 成人性生交大片免费看中文| 国产精品久久久久一区二区三区| 国产成人激情av| 国产精品美女久久久久久久| www.欧美.com| 亚洲精品乱码久久久久久| 在线看国产日韩| 日本亚洲一区二区| 久久―日本道色综合久久| 成人免费视频app| 亚洲精品久久久蜜桃| 欧美午夜免费电影| 蜜桃视频一区二区三区| 国产欧美一区视频| 91在线视频官网| 性做久久久久久久久| 欧美xxxxx裸体时装秀| 国产成人精品免费网站| 亚洲欧美一区二区不卡| 欧美日韩国产一级| 国产一区二区在线观看视频| 久久久综合激的五月天| 国产亚洲综合av| 国产亚洲精品超碰| 亚洲成人在线网站| 精品国产一区a| 99视频精品免费视频| 亚洲gay无套男同| 国产日本欧洲亚洲| 欧美四级电影在线观看| 国产一区二区三区精品视频| 亚洲免费观看高清完整版在线 | 国产色一区二区| 色噜噜狠狠成人中文综合| 日本欧美大码aⅴ在线播放| 国产精品视频麻豆| 91精品欧美一区二区三区综合在 | 日韩高清在线电影| 亚洲欧洲国产专区| 欧美大胆人体bbbb| 色嗨嗨av一区二区三区| 国产一区二区按摩在线观看| 亚洲一卡二卡三卡四卡无卡久久| 久久久久国产精品麻豆ai换脸 | 波多野结衣在线aⅴ中文字幕不卡| 亚洲一区二区三区精品在线| 国产亚洲精品精华液| 555www色欧美视频| 日本韩国精品一区二区在线观看| 狠狠狠色丁香婷婷综合激情| 水蜜桃久久夜色精品一区的特点| 亚洲丝袜美腿综合| 中文字幕欧美日本乱码一线二线| 日韩一区二区精品葵司在线| 欧美性大战久久久久久久蜜臀| 成人永久免费视频| 精品一区二区三区视频在线观看 | 久久99国产精品尤物| 亚洲国产aⅴ成人精品无吗| 欧美国产日韩a欧美在线观看| 日韩午夜在线影院| 91麻豆精品91久久久久同性| 欧美日韩一区二区电影| 一本久久a久久免费精品不卡| 国产传媒日韩欧美成人| 九色porny丨国产精品| 日本欧美一区二区三区| 五月天欧美精品| 亚洲成人免费电影| 亚洲国产精品一区二区久久| 亚洲午夜免费福利视频| 亚洲综合偷拍欧美一区色| 亚洲美腿欧美偷拍| 亚洲人成网站精品片在线观看 | 色网综合在线观看| 97精品视频在线观看自产线路二| 高清免费成人av| 成人自拍视频在线观看| av网站免费线看精品| 色偷偷成人一区二区三区91| 色综合天天综合狠狠| 欧美在线视频全部完| 欧美日韩综合不卡| 欧美精品免费视频| 欧美丰满少妇xxxxx高潮对白| 国产麻豆精品theporn| 久久精品一区二区| 色综合久久88色综合天天免费| 97久久久精品综合88久久| gogo大胆日本视频一区| 99riav一区二区三区| 色天天综合色天天久久| 在线观看国产91| 欧美在线观看视频一区二区三区| 欧美日韩高清一区二区| 91精品久久久久久久99蜜桃 | 青青草原综合久久大伊人精品| 日韩综合小视频| 国产真实乱子伦精品视频| 成人免费视频caoporn| 欧美亚日韩国产aⅴ精品中极品| 欧美精品免费视频| 亚洲国产精品精华液ab| 亚洲激情五月婷婷| 激情六月婷婷综合| 91免费在线视频观看| 欧美一区二区三区在线观看| 国产日本亚洲高清| 偷拍亚洲欧洲综合| 国产传媒久久文化传媒| 欧美在线免费观看亚洲| 91精品国产91久久久久久一区二区| 久久亚洲欧美国产精品乐播| 夜夜精品视频一区二区| 狠狠色狠狠色综合系列| 色综合色狠狠综合色| 精品日韩欧美在线| 亚洲免费观看在线观看| 极品美女销魂一区二区三区| 色综合一区二区三区| 久久婷婷成人综合色| 亚洲一区二区三区自拍| 国产精品综合二区| 欧美日本在线一区| 自拍偷拍亚洲综合| 国产一区二区视频在线播放| 欧美在线视频不卡| 国产精品美日韩| 国产综合一区二区| 精品污污网站免费看| 国产精品私房写真福利视频| 免费看欧美美女黄的网站| 欧洲在线/亚洲| 亚洲欧洲精品一区二区三区不卡| 久色婷婷小香蕉久久| 久久综合成人精品亚洲另类欧美 | 悠悠色在线精品| 国产福利不卡视频| 日韩一二三四区| 午夜精品一区二区三区电影天堂 | 国产精品白丝在线| 九色综合国产一区二区三区| 欧美色男人天堂| 亚洲欧美一区二区三区孕妇| 国产精品资源站在线| 精品国产乱码久久久久久1区2区| 亚洲一卡二卡三卡四卡| 在线观看网站黄不卡| 亚洲欧洲成人精品av97| 成人午夜av影视| 欧美激情一区三区| 国产一区二区三区美女| 久久婷婷成人综合色| 国产美女久久久久| 久久亚洲精品小早川怜子| 国产一区二区美女| 久久精品人人做| 福利电影一区二区| 国产精品每日更新在线播放网址| 成人影视亚洲图片在线|