亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
h\,t\,\left({4 \over {v^2}} + \left({{\partial t} \over {\partial h}}\right)^2\,-\left({{\partial t} \over {\partial x}}\right)^2\right)\;.\label{eq:OCeikonal}\end{equation}Differentiating (\ref{eq:length}) with respect to the velocity $v$ yields\begin{equation}- v^2\,{{\partial t} \over {\partial v}} = 2\,h\,{\cos{\alpha} \over \sin{\theta}}\;.\label{eq:dtdv} \end{equation}Finally, dividing (\ref{eq:dtdv}) by (\ref{eq:snells3}) produces\begin{equation}v\,{{\partial z} \over {\partial v}} = {h \over {\cos{\theta}\,\sin{\theta}}}\;.\label{eq:dzdv} \end{equation}Equation (\ref{eq:dzdv}) can be written in a variety of ways with the helpof an explicit geometric relationship between the half-offset $h$ andthe depth $z$, \begin{equation}h = z\,{{\sin{\theta}\,\cos{\theta}} \over{\cos^2{\alpha}-\sin^2{\theta}}}\;, \label{eq:z2h} \end{equation}which follows directly from the trigonometry of the triangle in Figure\ref{fig:vlcray} \cite[]{ofcon}. For example, equation (\ref{eq:dzdv}) canbe transformed to the form obtained by \cite{GEO60-01-01420153}:\begin{equation}v\,{{\partial z} \over {\partial v}} = {z \over{\cos^2{\alpha}-\sin^2{\theta}}} ={z \over{\cos{\alpha_1}\,\cos{\alpha_2}}}\;.\label{eq:liu} \end{equation}In order to separate different factors contributing to the velocitycontinuation process, one can transform this equation to the form\begin{eqnarray}\nonumberv\,{{\partial z} \over {\partial v}} & = & {z \over {\cos^2{\alpha}}} +{{h^2} \over z}\,\left(1-\tan^2{\alpha}\,\tan^2{\theta}\right) \\& = & z\,\left(1 + \left({{\partial z} \over {\partial x}}\right)^2\right) +{{h^2} \over z}\,\left(1-\left({{\partial z} \over {\partial x}}\right)^2\,\left({{\partial z} \over {\partial h}}\right)^2\right)\;.\label{eq:zeikonal} \end{eqnarray}Rewritten in terms of the vertical traveltime $\tau = z/v$, it furthertransforms to equation \begin{equation}{{\partial \tau} \over {\partial v}} = v\,\tau\,\left({{\partial \tau} \over {\partial x}}\right)^2 +{{h^2} \over {v^3\,\tau}}\,\left(1 - v^4\,\left({{\partial \tau} \over {\partial x}}\right)^2\,\left({{\partial \tau} \over {\partial h}}\right)^2\right)\;,\label{eq:eikonal0} \end{equation}equivalent to equation~(\ref{eq:eikonal}) in the main text. Yetanother form of the kinematic velocity continuation equation followsfrom eliminating the reflection angle $\theta$ from equations(\ref{eq:dzdv}) and (\ref{eq:z2h}). The resultant expression takes thefollowing form:\begin{equation}v\,{{\partial z} \over {\partial v}} = {{2\,(z^2 + h^2)} \over{\sqrt{z^2 + h^2 \sin^2{2\,\alpha}} + z\,\cos{2\,\alpha}}} ={z \over {\cos^2{\alpha}}} + {{2\,h^2} \over{\sqrt{z^2 + h^2 \sin^2{2\,\alpha}} + z}}\;.\label{eq:notheta} \end{equation}\append{Derivation of the residual DMO kinematics}This appendix derives the kinematical laws for the residual NMO+DMOtransformation in the prestack offset continuation process.The direct solution of equation (\ref{eq:DMONMOeikonal}) isnontrivial. A simpler way to obtain this solution is to decomposeresidual NMO+DMO into three steps and to evaluate their contributionsseparately. Let the initial data be the zero-offset reflection event$\tau_0(x_0)$. The first step of the residual NMO+DMO is the inverseDMO operator. One can evaluate the effect of this operator by means ofthe offset continuation concept \cite[]{ofcon}. According to thisconcept, each point of the input traveltime curve $\tau_0(x_0)$travels with the change of the offset from zero to $h$ along a specialtrajectory, which I call a {\em time ray}. Time rays are paraboliccurves of the form\begin{equation}x\left(\tau\right) =  x_0+{{\tau^2-\tau_0^2\left(x_0\right)} \over{\tau_0\left(x_0\right)\,\tau_0'\left(x_0\right)}}\;,\label{eq:xoftau}\end{equation}with the final points constrained by the equation\begin{equation}h^2 = \tau^2\,{{\tau^2-\tau_0^2\left(x_0\right)} \over{\left(\tau_0\left(x_0\right)\,\tau_0'\left(x_0\right)\right)^2}}\;,\label{eq:hoftau}\end{equation}where $\tau_0'\left(x_0\right)$ is the derivative of $\tau_0\left(x_0\right)$.The second step of the cumulative residual NMO+DMO process is theresidual normal moveout. According to equation (\ref{eq:ResNMO}), residualNMO is a one-trace operation transforming the traveltime $\tau$ to$\tau_1$ as follows:\begin{equation}\tau_1^2 = \tau^2 + h^2\,d\;,\label{eq:ResNMO2} \end{equation}where\begin{equation}d = \left({1 \over v_0^2} - {1 \over v_1^2}\right)\;.\label{eq:formers}\end{equation}The third step is dip moveout corresponding to the new velocity$v_1$. DMO is the offset continuation from $h$ to zerooffset along the redefined time rays \cite[]{ofcon}\begin{equation}x_2\left(\tau_2\right) =  x + {{h\,X} \over {\tau_1^2\,H}}\,\left(\tau_1^2-\tau_2^2\right)\;,\label{eq:xoftau2}\end{equation}where $H = {{\partial \tau_1} \over {\partial h}}$, and $X ={{\partial \tau_1} \over {\partial x}}$. The end points of the time rays (\ref{eq:xoftau2}) are defined by theequation\begin{equation}\tau_2^2 = - \tau_1^2\,{{\tau_1\,H} \over {h\,X^2}}\;.\label{eq:tauofh2}\end{equation}The partial derivatives of the common-offset traveltimes areconstrained by the offset continuation kinematic equation\begin{equation}h\,(H^2 - X^2) = \tau_1\,H\;,\label{eq:OCequation}\end{equation}which is equivalent to equation (\ref{eq:OCeikonal}) in AppendixA. Additionally, as follows from equations (\ref{eq:ResNMO2}) and the rayinvariant equations from \cite[]{ofcon},\begin{equation}\tau_1\,X = \tau\,{{\partial \tau} \over {\partial x}} = {{\tau^2\,\tau_0'\left(x_0\right)} \over {\tau_0\left(x_0\right)}}\;.\label{eq:invariant}\end{equation}Substituting~(\ref{eq:xoftau}-\ref{eq:formers}) and(\ref{eq:OCequation}-\ref{eq:invariant}) into equations(\ref{eq:xoftau2}) and (\ref{eq:tauofh2}) and performing the algebraicsimplifications yields the parametric expressions for velocityrays of the residual NMO+DMO process:\begin{equation}\left\{\begin{array}{rcl}x_2(d) & = & \displaystyle{x_0 + {{h^2\,\tau_0'(x_0)} \over T}\,\left(1 - {T^2 \over T_2^2(d)}\right)}\;,\\ \\\tau(d) & = & \displaystyle{{{\tau_1^2(d)} \over {T_2(d)}}}\;,\end{array}\right.\label{eq:ResDMO2}\end{equation}where the function$T\left(h,\tau_0(x_0),\tau_0'\left(x_0\right)\right)$ is defined by\begin{equation}T\left(h,\tau,\tau_x\right) = {{\tau + \sqrt{\tau^2 + 4\,h^2\,\tau_x^2}} \over 2}\;,\label{eq:CapT}\end{equation}\begin{equation}T_2(d) = \sqrt{T\left(h,\tau_1^2(d),\tau_0'\left(x_0\right)\,T\left(h,\tau_0(x_0),\tau_0'\left(x_0\right)\right)\right)}\;,\label{eq:CapT2}\end{equation}and\begin{equation}\tau_1^2(d) = \tau_0\,T + d\,h^2\;.\label{eq:tauofs}\end{equation}The last step of the cascade of inverse DMO, residual NMO, and DMO isillustrated in Figure \ref{fig:vlcvoc}. The three plots in the figure showthe offset continuation to zero offset of the inverse DMO impulseresponse shifted by the residual NMO operator. The middle plotcorresponds to zero NMO shift, for which the DMO step collapses thewavefront back to a point.  Both positive (top plot) and negative(bottom plot) NMO shifts result in the formation of the specifictriangular impulse response of the residual NMO+DMO operator. Asnoticed by \cite{Etgen.sepphd.68}, the size of the triangularoperators dramatically decreases with the time increase.  For largetimes (pseudo-depths) of the initial impulses, the operator collapsesto a point corresponding to the pure NMO shift.\inputdir{Math}\sideplot{vlcvoc}{width=0.9\textwidth}{Kinematic residual NMO+DMO  operators constructed by the cascade of inverse DMO, residual NMO,  and DMO. The impulse response of inverse DMO is shifted by the  residual NMO procedure. Offset continuation back to zero offset  forms the impulse response of the residual NMO+DMO operator. Solid  lines denote traveltime curves; dashed lines denote the offset  continuation trajectories (time rays). Top plot: $v_1/v_0 = 1.2$.  Middle plot: $v_1/v_0 = 1$; the inverse DMO impulse response  collapses back to the initial impulse. Bottom plot: $v_1/v_0 = 0.8$.  The half-offset $h$ in all three plots is 1 km.}\append{INTEGRAL VELOCITY CONTINUATION AND KIRCHHOFF MIGRATION}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%The main goal of this appendix is to prove the equivalence between theresult of zero-offset velocity continuation from zero velocity andconventional post-stack migration. After solving the velocitycontinuation problem in the frequency domain, I transform the solutionback to the time-and-space domain and compare it with the conventionalKirchhoff migration operator \cite[]{GEO43-01-00490076}. The frequency-domainsolution has its own value, because it forms the basis for an efficientspectral algorithm for velocity continuation \cite[]{second}.  Zero-offset migration based on velocity continuation is the solutionof the boundary problem for equation (\ref{eq:POMequation2}) with theboundary condition\begin{equation}\left.P\right|_{v=0} = P_0\;,\label{eq:POMbound} \end{equation}where $P_0(t_0,x_0)$ is the zero-offset seismic section, and$P(t,x,v)$ is the continued wavefield. In order to find the solutionof the boundary problem composed of (\ref{eq:POMequation2}) and(\ref{eq:POMbound}), it is convenient to apply the functiontransformation $R(t,x,v) = t\,P(t,x,v)$, the time coordinatetransformation $\sigma = t^2/2$, and, finally, the double Fouriertransform over the squared time coordinate $\sigma$ and the spatialcoordinate $x$:\begin{equation}\widehat{R}(v) = \int \int\,P(t,x,v)\,\exp(i \Omega \sigma - i k x )\,t^2\,dt\,dx\;.\label{eq:FTK} \end{equation}With the change of domain, equation (\ref{eq:POMequation2}) transformsto the ordinary differential equation\begin{equation}{{d\,\widehat{R}} \over {d\,v}} = i\,{k^2 \over \Omega}\,v\,\widehat{R}\;,\label{eq:ODE} \end{equation}and the boundary condition (\ref{eq:POMbound}) transforms to the initialvalue condition\begin{equation}\widehat{R}(0) = \widehat{R}_0\;, \label{eq:ODEbound} \end{equation}where \begin{equation}\widehat{R}_0 = \int \int\,P_0(t_0,x_0)\,\exp(i \Omega \sigma_0 - i k x_0 )\,t_0^2\,dt_0\,dx_0\;,\label{eq:FTK0}\end{equation}and $\sigma_0 = t_0^2/2$.  The unique solution of the initial value(Cauchy) problem (\ref{eq:ODE}) - (\ref{eq:ODEbound}) is easily found to be\begin{equation}\widehat{R}(v) = \widehat{R}_0\,\exp\left( i\,{{k^2} \over {2\,\Omega}}\,v^2\right)\;.\label{eq:ODEsolution} \end{equation}In the transformed domain, velocity continuation appears to be a unitaryphase-shift operator. An immediate consequence of this remarkable fact is thecascaded migration decomposition of post-stack migration\cite[]{GEO52-05-06180643}:\begin{equation}\exp\left( i\,{{k^2} \over {2\,\Omega}}\,(v_1^2 +  \cdots + v_n^2)\right) =\exp\left( i\,{{k^2} \over {2\,\Omega}}\,v_1^2\right)\,\cdots\,\exp\left( i\,{{k^2} \over {2\,\Omega}}\,v_n^2\right)\;.\label{eq:cascaded} \end{equation}Analogously, three-dimensional post-stack migration is decomposedinto the two-pass procedure \cite[]{GPR31-01-00340056}:\begin{equation}\exp\left( i\,{{k_1^2+k_2^2} \over {2\,\Omega}}\,v^2\right) =\exp\left( i\,{{k_1^2} \over {2\,\Omega}}\,v^2\right)\,\exp\left( i\,{{k_2^2} \over {2\,\Omega}}\,v^2\right)\;.\label{eq:two-pass}\end{equation}The inverse double Fourier transform of both sides of equality(\ref{eq:ODEsolution}) yields the integral (convolution) operator\begin{equation}P(t,x,v) = \int\int\,P_0(t_0,x_0)\,K(t_0,x_0;t,x,v)\,dt_0\,dx_0\;,\label{eq:convolution}\end{equation}with the kernel $K$ defined by\begin{equation}K = {{t_0^2/t} \over {(2\,\pi)^{m+1}}}\,\int\int\,\exp\left(i\,{{k^2} \over {2\,\Omega}}\,v^2 + ik\,(x - x_0) - {{i\Omega} \over 2}\,(t^2 - t_0^2)\right)\,dk\,d\Omega\;,\label{eq:kernel}\end{equation}where $m$ is the number of dimensions in $x$ and $k$ ($m$ equals $1$or $2$). The inner integral on the wavenumber axis $k$ in formula(\ref{eq:kernel}) is a known table integral \cite[]{grad}. Evaluating thisintegral simplifies equation (\ref{eq:kernel}) to the form\begin{equation}K = {{t_0^2/t} \over {(2\,\pi)^{m/2+1}\,v^m}}\,\int\,(i\Omega)^{m/2}\,\exp\left[{{i\Omega} \over 2}\,\left(t_0^2 - t^2 - {{(x - x_0)^2} \over v^2}\right)\right]\,d\Omega\;.\label{eq:skernel}\end{equation}The term $(i\Omega)^{m/2}$ is the spectrum of the anti-causalderivative operator ${d \over {d\sigma}}$ of the order $m/2$. Notingthe equivalence\begin{equation}\left({\partial \over {\partial \sigma}}\right)^{m/2} =\left({1 \over t}\,{\partial \over {\partial t}}\right)^{m/2} =\left({1 \over t}\right)^{m/2}\,\left({\partial \over {\partial t}}\right)^{m/2}\;,\label{eq:halfdif}\end{equation}which is exact in the 3-D case ($m=2$) and asymptotically correct inthe 2-D case ($m=1$), and applying the convolution theoremtransforms operator (\ref{eq:convolution}) to the form\begin{equation}P(t,x,v) = {1 \over {(2\,\pi)^{m/2}}}\,\int\,{{\cos{\alpha}} \over {(v\,\rho)^{m/2}}}\,\left(- {\partial \over {\partial t_0}}\right)^{m/2}P_0\left({\rho \over v},x_0\right)\,dx_0\;,\label{eq:Kirchhoff}\end{equation}where $\rho = \sqrt{v^2\,t^2 + (x - x_0)^2}$, and $\cos{\alpha} =t_0/t$. Operator (\ref{eq:Kirchhoff}) coincides with the Kirchhoff operatorof conventional post-stack time migration \cite[]{GEO43-01-00490076}.\newpage%%% Local Variables: %%% mode: latex%%% TeX-master: t%%% TeX-master: t%%% TeX-master: t%%% TeX-master: t%%% TeX-master: t%%% TeX-master: t%%% TeX-master: t%%% End: 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美羞羞免费网站| 91在线观看免费视频| 欧美一区二区三区在线看| 亚洲v日本v欧美v久久精品| 欧美日韩一区二区电影| 亚洲国产视频一区| 337p亚洲精品色噜噜噜| 激情小说欧美图片| 国产欧美视频在线观看| av激情综合网| 亚洲午夜久久久久中文字幕久| 欧美日本一道本| 狠狠色2019综合网| 国产精品美女久久久久久久久 | 国产在线播精品第三| 国产拍欧美日韩视频二区| 91在线精品秘密一区二区| 亚洲最新视频在线播放| 日韩精品资源二区在线| bt欧美亚洲午夜电影天堂| 亚洲韩国精品一区| 精品久久一二三区| 99re亚洲国产精品| 日日骚欧美日韩| 欧美激情一区三区| 欧美日韩在线三级| 国产麻豆午夜三级精品| 一区二区三区蜜桃| 久久综合国产精品| 日本韩国欧美一区二区三区| 蜜臀av亚洲一区中文字幕| 欧美激情一区二区三区不卡| 欧美精品一二三| 国产1区2区3区精品美女| 亚洲一卡二卡三卡四卡五卡| 久久精品一区二区三区四区| 欧洲日韩一区二区三区| 国产自产高清不卡| 亚洲一区二区三区四区的| 久久综合av免费| 精品视频免费在线| 99久久婷婷国产精品综合| 免费高清在线一区| 亚洲欧美激情小说另类| 久久久国产一区二区三区四区小说| 91蜜桃免费观看视频| 国产一区二区美女诱惑| 亚洲18影院在线观看| 中文字幕一区二区三区精华液| 日韩一区二区三区三四区视频在线观看 | 福利视频网站一区二区三区| 天堂在线亚洲视频| 亚洲激情图片qvod| 国产精品青草综合久久久久99| 日韩精品资源二区在线| 欧美日韩久久一区二区| 色一情一伦一子一伦一区| 国产aⅴ综合色| 乱中年女人伦av一区二区| 亚洲成a人片综合在线| 中文字幕综合网| 欧美激情一区二区三区在线| 久久久久久久久久久久久夜| 亚洲精品一区二区三区香蕉| 在线电影院国产精品| 欧美乱妇20p| 欧美日韩精品一区视频| 欧美美女一区二区三区| 欧美日韩欧美一区二区| 欧美日韩中文国产| 欧美色图片你懂的| 欧美中文字幕一区| 在线观看区一区二| 欧美伊人久久大香线蕉综合69| 91原创在线视频| 99re视频精品| 欧美亚洲国产bt| 欧美探花视频资源| 欧美区一区二区三区| 欧美日韩夫妻久久| 91精品国产日韩91久久久久久| 在线不卡欧美精品一区二区三区| 欧美日韩一二三区| 91.成人天堂一区| 日韩欧美一区中文| 久久综合九色综合欧美就去吻 | 极品美女销魂一区二区三区| 国产综合久久久久久鬼色| 国产麻豆精品95视频| 国产精品亚洲视频| av一区二区三区黑人| 在线视频你懂得一区二区三区| 色素色在线综合| 欧美剧情片在线观看| 日韩欧美www| 国产日韩欧美精品一区| 自拍偷拍欧美精品| 婷婷综合久久一区二区三区| 蜜桃视频一区二区三区在线观看| 国产毛片一区二区| 91在线观看地址| 91麻豆精品国产综合久久久久久 | 欧美国产激情一区二区三区蜜月 | 亚洲一区在线观看免费观看电影高清| 婷婷国产在线综合| 国产一区二区成人久久免费影院| 成人在线视频一区二区| 色屁屁一区二区| 欧美日韩视频在线第一区| 欧美不卡一区二区三区| 国产精品乱人伦一区二区| 亚洲成av人片在线| 狠狠v欧美v日韩v亚洲ⅴ| 91欧美一区二区| 91精品国产一区二区三区香蕉| 国产欧美一区二区精品久导航| 亚洲一区二区av在线| 国产精品一区一区三区| 欧美性视频一区二区三区| 久久免费视频色| 亚洲午夜激情av| 国产成人免费高清| 91精品欧美福利在线观看| 中文字幕精品在线不卡| 午夜精品成人在线| 99久久综合99久久综合网站| 欧美一级黄色片| 亚洲欧美偷拍另类a∨色屁股| 久久成人免费电影| 欧美吞精做爰啪啪高潮| 中文字幕久久午夜不卡| 老司机精品视频导航| 一本大道久久a久久精品综合| 久久综合九色综合久久久精品综合| 亚洲一区二区精品久久av| 成人精品gif动图一区| 欧美xxxx在线观看| 婷婷中文字幕一区三区| 色老汉av一区二区三区| 国产亚洲1区2区3区| 日av在线不卡| 在线观看成人免费视频| 最新热久久免费视频| 国产一区欧美日韩| 91精品啪在线观看国产60岁| 亚洲综合激情小说| 9l国产精品久久久久麻豆| 久久夜色精品国产欧美乱极品| 亚洲韩国精品一区| 色婷婷久久久久swag精品| 国产精品久久久久久久浪潮网站| 激情文学综合丁香| 日韩欧美另类在线| 日韩中文字幕一区二区三区| 日本韩国欧美一区| 亚洲女同女同女同女同女同69| 国产精品亚洲第一区在线暖暖韩国| 日韩一级片网址| 石原莉奈在线亚洲三区| 欧美日韩一本到| 一区二区视频在线| 日本韩国欧美一区二区三区| 亚洲狠狠丁香婷婷综合久久久| 99久久精品一区二区| 国产精品萝li| 成人黄动漫网站免费app| 欧美高清在线精品一区| 不卡的av电影在线观看| 国产精品乱人伦中文| 91同城在线观看| 亚洲美腿欧美偷拍| 在线观看亚洲a| 亚洲第一电影网| 欧美一区二区视频在线观看| 日韩中文字幕不卡| 欧美r级电影在线观看| 国产精品一区2区| 国产婷婷色一区二区三区在线| 丰满放荡岳乱妇91ww| 国产精品麻豆视频| 色噜噜狠狠成人网p站| 同产精品九九九| 精品剧情v国产在线观看在线| 国产精品一区二区三区乱码| 国产精品久久久久久久岛一牛影视 | 免费一级欧美片在线观看| 欧美一区永久视频免费观看| 久久国产日韩欧美精品| xfplay精品久久| 91亚洲大成网污www| 亚洲国产成人va在线观看天堂| 51精品久久久久久久蜜臀| 国产麻豆精品在线| 亚洲人精品午夜| 欧美人xxxx| 成人精品视频一区二区三区尤物| 亚洲精品视频观看| 日韩一区二区高清| thepron国产精品| 首页国产欧美日韩丝袜|