亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? delaunay.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 2 頁
字號:
\append{Incremental DELAUNAY TRIANGULATION and related problems}Delaunay triangulation \cite[]{delaunay2,sibson,stolfi} is a fundamentalgeometric construction, which has numerous applications in differentcomputational problems. For a given set of nodes (points on theplane), Delaunay triangulation constructs a triangle tessellation ofthe plane with the initial nodes as vertices. Among all possibletriangulations, the Delaunay triangulation possesses optimalproperties, which make it very attractive for practical applications,such as computational mesh generation. One of the most well-knownproperties is maximizing the minimum triangulation angle. In threedimensions, Delaunay triangulation generalizes naturally to atetrahedron tessellation.\parSeveral optimal-time algorithms of Delaunay triangulation (and itscounterpart--Voronoi diagram) have been proposed in the literature.The divide-and-conquer algorithm \cite[]{shamos,stolfi} and thesweep-line algorithm \cite[]{fortune} both achieve the optimal $O (N\log N)$ worst-case time complexity. Alternatively, a family ofincremental algorithms has been used in practice because of theirsimplicity and robustness. Though the incremental algorithm can take$O (N^2)$ time in the worst case, the expectation time can still be $O(N \log N)$, provided that the nodes are inserted in a random order\cite[]{knuth}.\parThe incremental algorithm consists of two main parts: \begin{enumerate} \item Locate a triangle (or an edge), containing the inserted point. \item Insert the point into the current triangulation, making the   necessary adjustments. \end{enumerate}\parThe Delaunay criterion can be reduced in the second step to a simple\emph{InCircle} test \cite[]{stolfi}: if a circumcircle of a trianglecontains another triangulation vertex in its circumcenter, then theedge between those two triangles should be ``flipped'' so that two newtriangles are produced. The testing is done in a recursive fashionconsistent with the incremental nature of the algorithm. When a newnode is inserted inside a triangle, three new triangles are created,and three edges need to be tested. When the node falls on an edge,four triangles are created, and four edges are tested. In the case oftest failure, a pair of triangles is replaced by the flip operationwith another pair, producing two more edges to test. Under therandomization assumption, the expected total time of point insertionis $O (N)$.  Randomization can be considered as an external part ofthe algorithm, provided by preprocessing.\par\cite{knuth} reduce the point location step to an efficient $O (N\log N)$ procedure by maintaining a hierarchical tree structure: alltriangles, occurring in the incremental triangulation process, arekept in memory, associated with their ``parents.'' One or two pointlocation tests (\emph{CCW} tests) are sufficient to move to a lowerlevel of the tree. The search terminates with a current Delaunaytriangle.\parTo test the algorithmic performance of the incremental construction, Ihave profiled the execution time of my incremental triangulationprogram with the Unix \texttt{pixie} utility. The profiling result,shown in Figures~\ref{fig:itime} and~\ref{fig:ctime}, compliesremarkably with the theory: $O (N \log N)$ operations for the pointlocation step, and $O (N)$ operations for the point insertion step.The experimental constant for the insertion step time is about $8.6$.The experimental constant for the point location step is $4$.  The CPUtime, depicted in Figure~\ref{fig:time}, also shows the expected $O (N\log N)$ behavior.\inputdir{.}\sideplot{itime}{width=2.5in}{The number of point insertion operations(\emph{InCircle} test) plotted against the number of points.}\sideplot{ctime}{width=2.5in}{Number of point location operations  (\emph{CCW} test) plotted against the number of points.}\sideplot{time}{width=2.5in}{CPU time (in seconds per point) plotted  against the number of points.}\parA straightforward implementation of Delaunay triangulation wouldprovide an optimal triangulation for any given set of nodes. However,the quality of the result for unfortunate geometricaldistributions of the nodes can be unsatisfactory. In the rest of thisappendix, I describe three problems, aimed at improving thetriangulation quality: conforming triangulation, triangulation ofheight fields, and mesh refinement.  Each of these problems can besolved with a variation of the incremental algorithm.\subsection{Conforming Triangulation}\inputdir{tri}In the practice of mesh generation, the input nodes are oftensupplemented by boundary edges: geologic interfaces, seismic rays, andso on. It is often desirable to preserve the edges so that they appearas edges of the triangulation \cite[]{SEG-1994-0502}. One possible approach is\emph{constrained} triangulation, which preserves the edges, but onlyapproximately satisfies the Delaunay criterion \cite[]{lee,chew}. Analternative, less investigated, approach is \emph{conforming}triangulation, which preserves the ``Delaunayhood'' of thetriangulation by adding additional nodes \cite[]{hansen} (Figure\ref{fig:conform}).  Conforming Delaunay triangulations are difficultto analyze because of the variable number of additional nodes. Thisproblem was attacked by \cite{edels}, who suggested an algorithmwith a defined upper bound on added points. Unfortunately,Edelsbrunner's algorithm is slow in practice because the number ofadded points is largely overestimated.  I chose to implement amodification of the simple incremental algorithm of Hansen and Levin.Although Hansen's algorithm has only a heuristic justification andsets no upper bound on the number of inserted nodes, its simplicity isattractive for practical implementations, where it can be easilylinked with the incremental algorithm of Delaunay triangulation.\parThe incremental solution to the problem of conforming triangulationcan be described by the following scheme: \begin{itemize} \item First, the boundary nodes are triangulated. \item Boundary edges are inserted incrementally. \item If a boundary edge is not present in the triangulations, it is   split in half, and the middle node is inserted into the triangulation. This   operation is repeated for the two parts of the original boundary   edge and continues recursively until all the edge parts    conform. \item If at some point during the incremental process, a boundary edge   violates the Delaunay criterion (the \emph{InCircle} test), it is   split to assure the conformity. \end{itemize}\plot{conform}{width=4in,height=2in}{An illustration of conforming triangulation.  The left plot shows a triangulation of 500 random points; the  triangulation in the right plot is conforming to the embedded  boundary.  Conforming triangulation is a genuine Delaunay  triangulation, created by adding additional nodes to the original  distribution.}\parTo insert an edge $AB$ into the current triangulation, I use thefollowing recursive algorithm: \begin{quote} Function \textbf{InsertEdge} ($AB$) \begin{enumerate} \item Define $C$ to be the midpoint of $AB$. \item Using the triangle tree structure, locate triangle $\mathcal{T} = DEF$   that contains $C$ in the current triangulation. \item \textbf{If} $AB$ is an edge of $\mathcal{T}$ \textbf{then return}. \item \textbf{If} $A$ (or $B$) is a vertex of $\mathcal{T}$ (for example, $A = D$)   {\bf then} define $C$ as an intersection of $AB$ and $EF$. \item {\bf Else} define $C$ as an intersection of $AB$ and an   arbitrary edge of $\mathcal{T}$ (if such an intersection exists). \item Insert $C$ into the triangulation. \item {\bf InsertEdge} ($CA$). \item {\bf InsertEdge} ($CB$). \end{enumerate} \end{quote}\parThe intersection point  of edges $AB$ and $EF$ is given by the formula\begin{equation}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
av在线播放成人| 日韩av网站免费在线| 欧美变态tickling挠脚心| 欧美亚洲日本国产| 日本精品视频一区二区三区| 97久久精品人人澡人人爽| 色综合久久中文字幕综合网| 99国产精品久久| 91福利在线免费观看| 欧美午夜不卡视频| 欧美一区二区在线不卡| 欧美一区二视频| 久久久欧美精品sm网站| 欧美国产禁国产网站cc| 亚洲欧美另类久久久精品2019| 最新国产の精品合集bt伙计| 亚洲天堂2016| 亚洲成人自拍偷拍| 精品亚洲成a人在线观看| 国产精品一区在线观看你懂的| 国产成人无遮挡在线视频| 91视频观看免费| 欧美精品亚洲二区| 久久伊99综合婷婷久久伊| 国产精品国产自产拍高清av王其 | 欧美性videosxxxxx| 欧美日韩免费不卡视频一区二区三区| 91精品婷婷国产综合久久| 欧美精品一区二区精品网| 国产精品视频看| 婷婷激情综合网| 国产一区二区91| 欧美视频一区二区三区| 欧美成人一区二区三区片免费| 国产精品无圣光一区二区| 亚洲欧美一区二区三区国产精品| 亚洲成人一区二区在线观看| 激情文学综合丁香| 91福利在线观看| 久久久91精品国产一区二区精品| 亚洲欧美激情视频在线观看一区二区三区 | 国产精品亚洲一区二区三区在线 | 日本vs亚洲vs韩国一区三区二区| 久久国产福利国产秒拍| 91豆麻精品91久久久久久| 欧美成人在线直播| 亚洲最新视频在线播放| 国产乱对白刺激视频不卡| 欧美色欧美亚洲另类二区| 国产丝袜欧美中文另类| 免费一级欧美片在线观看| 91久久精品一区二区| 久久婷婷国产综合精品青草| 午夜在线成人av| 色狠狠av一区二区三区| 国产精品久久影院| 国产中文字幕一区| 日韩区在线观看| 午夜成人免费电影| 欧美亚洲图片小说| 一区二区三区视频在线看| 国产91精品欧美| 久久久综合视频| 毛片不卡一区二区| 91精品国产综合久久精品app | 水蜜桃久久夜色精品一区的特点| www.欧美日韩国产在线| 国产午夜精品美女毛片视频| 国产在线观看一区二区 | 激情六月婷婷综合| 欧美精品九九99久久| 亚洲午夜精品在线| 欧美在线一二三| 一区二区三区四区五区视频在线观看| 国产高清久久久久| 欧美激情中文字幕| aaa国产一区| 亚洲天堂精品视频| 欧美亚洲动漫精品| 午夜天堂影视香蕉久久| 欧美日韩视频专区在线播放| 午夜日韩在线观看| 欧美一区二区私人影院日本| 久久激五月天综合精品| 日韩欧美综合一区| 国产成人a级片| 中文无字幕一区二区三区| 丰满少妇久久久久久久| 亚洲国产成人午夜在线一区| 成人动漫在线一区| 一区二区三区丝袜| 欧美一区二区免费观在线| 久久精品国产亚洲一区二区三区| 欧美成人a∨高清免费观看| 国产精品一二三区在线| 综合久久一区二区三区| 欧美猛男男办公室激情| 黄一区二区三区| 国产精品久久久久一区| 欧美中文字幕一区| 久久69国产一区二区蜜臀| 欧美国产精品一区二区| 在线一区二区视频| 久久精品国产第一区二区三区| 国产三级精品视频| 欧美亚洲一区二区三区四区| 国产麻豆精品视频| 一区二区三区在线视频免费| 日韩你懂的在线播放| www.亚洲色图.com| 美女视频黄久久| 国产精品欧美一区二区三区| 56国语精品自产拍在线观看| 国产91精品久久久久久久网曝门 | 中文一区一区三区高中清不卡| 95精品视频在线| 久久福利资源站| 亚洲视频电影在线| 欧美一级理论片| 日本高清不卡aⅴ免费网站| 久久精品久久精品| 亚洲一区二区三区三| 久久久五月婷婷| 欧美二区三区91| 日本精品一级二级| 国产福利一区二区三区在线视频| 亚洲成人第一页| 亚洲激情五月婷婷| 中文字幕乱码一区二区免费| 日韩欧美国产一二三区| 欧美午夜精品久久久久久孕妇| 国产v综合v亚洲欧| 久久91精品国产91久久小草| 午夜婷婷国产麻豆精品| 亚洲欧美经典视频| 国产精品你懂的在线欣赏| 欧美mv日韩mv国产网站app| 在线观看日韩精品| 色婷婷av一区| av资源站一区| a在线欧美一区| 成年人国产精品| 成人教育av在线| 粉嫩高潮美女一区二区三区| 久久国产精品99久久人人澡| 免费在线看成人av| 美女视频网站久久| 久久成人18免费观看| 日韩va亚洲va欧美va久久| 亚洲高清视频在线| 亚洲成人av在线电影| 亚洲国产精品久久久久婷婷884| 亚洲欧美日韩国产综合| 国产精品欧美经典| 亚洲丝袜制服诱惑| 亚洲精品国产a久久久久久 | 麻豆免费看一区二区三区| 亚洲一区二区三区三| 亚洲丰满少妇videoshd| 婷婷成人激情在线网| 天堂成人免费av电影一区| 亚洲成人资源在线| 日产国产欧美视频一区精品| 奇米888四色在线精品| 久久精品72免费观看| 国产一区二区免费在线| 一区二区三区四区激情| 亚洲自拍偷拍网站| 久久嫩草精品久久久精品一| 久久成人免费网| 国内精品第一页| 成人丝袜视频网| jlzzjlzz亚洲女人18| 欧美性videosxxxxx| 日韩一区二区三区观看| 久久久久国产一区二区三区四区 | 韩国欧美国产一区| 成人性视频网站| 欧美日韩一区 二区 三区 久久精品| 欧美久久免费观看| 国产日韩欧美精品电影三级在线| 综合色天天鬼久久鬼色| 日韩专区在线视频| 国产成人日日夜夜| 欧美日韩精品免费| 久久久久一区二区三区四区| 亚洲欧美日韩在线播放| 免费高清视频精品| 99国产精品99久久久久久| 欧美精品第1页| 国产精品网站在线| 蜜桃传媒麻豆第一区在线观看| 国产91精品一区二区麻豆网站| 精品视频一区 二区 三区| 国产午夜一区二区三区| 午夜精品福利在线| 99久久久无码国产精品| 2欧美一区二区三区在线观看视频| 亚洲欧洲av色图| 国产河南妇女毛片精品久久久|