亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? delaunay.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 2 頁
字號:
\append{Incremental DELAUNAY TRIANGULATION and related problems}Delaunay triangulation \cite[]{delaunay2,sibson,stolfi} is a fundamentalgeometric construction, which has numerous applications in differentcomputational problems. For a given set of nodes (points on theplane), Delaunay triangulation constructs a triangle tessellation ofthe plane with the initial nodes as vertices. Among all possibletriangulations, the Delaunay triangulation possesses optimalproperties, which make it very attractive for practical applications,such as computational mesh generation. One of the most well-knownproperties is maximizing the minimum triangulation angle. In threedimensions, Delaunay triangulation generalizes naturally to atetrahedron tessellation.\parSeveral optimal-time algorithms of Delaunay triangulation (and itscounterpart--Voronoi diagram) have been proposed in the literature.The divide-and-conquer algorithm \cite[]{shamos,stolfi} and thesweep-line algorithm \cite[]{fortune} both achieve the optimal $O (N\log N)$ worst-case time complexity. Alternatively, a family ofincremental algorithms has been used in practice because of theirsimplicity and robustness. Though the incremental algorithm can take$O (N^2)$ time in the worst case, the expectation time can still be $O(N \log N)$, provided that the nodes are inserted in a random order\cite[]{knuth}.\parThe incremental algorithm consists of two main parts: \begin{enumerate} \item Locate a triangle (or an edge), containing the inserted point. \item Insert the point into the current triangulation, making the   necessary adjustments. \end{enumerate}\parThe Delaunay criterion can be reduced in the second step to a simple\emph{InCircle} test \cite[]{stolfi}: if a circumcircle of a trianglecontains another triangulation vertex in its circumcenter, then theedge between those two triangles should be ``flipped'' so that two newtriangles are produced. The testing is done in a recursive fashionconsistent with the incremental nature of the algorithm. When a newnode is inserted inside a triangle, three new triangles are created,and three edges need to be tested. When the node falls on an edge,four triangles are created, and four edges are tested. In the case oftest failure, a pair of triangles is replaced by the flip operationwith another pair, producing two more edges to test. Under therandomization assumption, the expected total time of point insertionis $O (N)$.  Randomization can be considered as an external part ofthe algorithm, provided by preprocessing.\par\cite{knuth} reduce the point location step to an efficient $O (N\log N)$ procedure by maintaining a hierarchical tree structure: alltriangles, occurring in the incremental triangulation process, arekept in memory, associated with their ``parents.'' One or two pointlocation tests (\emph{CCW} tests) are sufficient to move to a lowerlevel of the tree. The search terminates with a current Delaunaytriangle.\parTo test the algorithmic performance of the incremental construction, Ihave profiled the execution time of my incremental triangulationprogram with the Unix \texttt{pixie} utility. The profiling result,shown in Figures~\ref{fig:itime} and~\ref{fig:ctime}, compliesremarkably with the theory: $O (N \log N)$ operations for the pointlocation step, and $O (N)$ operations for the point insertion step.The experimental constant for the insertion step time is about $8.6$.The experimental constant for the point location step is $4$.  The CPUtime, depicted in Figure~\ref{fig:time}, also shows the expected $O (N\log N)$ behavior.\inputdir{.}\sideplot{itime}{width=2.5in}{The number of point insertion operations(\emph{InCircle} test) plotted against the number of points.}\sideplot{ctime}{width=2.5in}{Number of point location operations  (\emph{CCW} test) plotted against the number of points.}\sideplot{time}{width=2.5in}{CPU time (in seconds per point) plotted  against the number of points.}\parA straightforward implementation of Delaunay triangulation wouldprovide an optimal triangulation for any given set of nodes. However,the quality of the result for unfortunate geometricaldistributions of the nodes can be unsatisfactory. In the rest of thisappendix, I describe three problems, aimed at improving thetriangulation quality: conforming triangulation, triangulation ofheight fields, and mesh refinement.  Each of these problems can besolved with a variation of the incremental algorithm.\subsection{Conforming Triangulation}\inputdir{tri}In the practice of mesh generation, the input nodes are oftensupplemented by boundary edges: geologic interfaces, seismic rays, andso on. It is often desirable to preserve the edges so that they appearas edges of the triangulation \cite[]{SEG-1994-0502}. One possible approach is\emph{constrained} triangulation, which preserves the edges, but onlyapproximately satisfies the Delaunay criterion \cite[]{lee,chew}. Analternative, less investigated, approach is \emph{conforming}triangulation, which preserves the ``Delaunayhood'' of thetriangulation by adding additional nodes \cite[]{hansen} (Figure\ref{fig:conform}).  Conforming Delaunay triangulations are difficultto analyze because of the variable number of additional nodes. Thisproblem was attacked by \cite{edels}, who suggested an algorithmwith a defined upper bound on added points. Unfortunately,Edelsbrunner's algorithm is slow in practice because the number ofadded points is largely overestimated.  I chose to implement amodification of the simple incremental algorithm of Hansen and Levin.Although Hansen's algorithm has only a heuristic justification andsets no upper bound on the number of inserted nodes, its simplicity isattractive for practical implementations, where it can be easilylinked with the incremental algorithm of Delaunay triangulation.\parThe incremental solution to the problem of conforming triangulationcan be described by the following scheme: \begin{itemize} \item First, the boundary nodes are triangulated. \item Boundary edges are inserted incrementally. \item If a boundary edge is not present in the triangulations, it is   split in half, and the middle node is inserted into the triangulation. This   operation is repeated for the two parts of the original boundary   edge and continues recursively until all the edge parts    conform. \item If at some point during the incremental process, a boundary edge   violates the Delaunay criterion (the \emph{InCircle} test), it is   split to assure the conformity. \end{itemize}\plot{conform}{width=4in,height=2in}{An illustration of conforming triangulation.  The left plot shows a triangulation of 500 random points; the  triangulation in the right plot is conforming to the embedded  boundary.  Conforming triangulation is a genuine Delaunay  triangulation, created by adding additional nodes to the original  distribution.}\parTo insert an edge $AB$ into the current triangulation, I use thefollowing recursive algorithm: \begin{quote} Function \textbf{InsertEdge} ($AB$) \begin{enumerate} \item Define $C$ to be the midpoint of $AB$. \item Using the triangle tree structure, locate triangle $\mathcal{T} = DEF$   that contains $C$ in the current triangulation. \item \textbf{If} $AB$ is an edge of $\mathcal{T}$ \textbf{then return}. \item \textbf{If} $A$ (or $B$) is a vertex of $\mathcal{T}$ (for example, $A = D$)   {\bf then} define $C$ as an intersection of $AB$ and $EF$. \item {\bf Else} define $C$ as an intersection of $AB$ and an   arbitrary edge of $\mathcal{T}$ (if such an intersection exists). \item Insert $C$ into the triangulation. \item {\bf InsertEdge} ($CA$). \item {\bf InsertEdge} ($CB$). \end{enumerate} \end{quote}\parThe intersection point  of edges $AB$ and $EF$ is given by the formula\begin{equation}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区二区三区免费| 国产欧美精品一区aⅴ影院 | 日本一区二区三区四区| 91黄色免费网站| 国内精品国产成人国产三级粉色 | 日韩不卡一区二区| 国产精品美女久久久久高潮| 欧美一级日韩不卡播放免费| 不卡的电影网站| 久久国产精品99精品国产| 一区二区三区四区激情| 国产欧美日本一区二区三区| 欧美一级二级三级乱码| 欧美在线短视频| 色综合久久六月婷婷中文字幕| 国产乱码精品一区二区三区av | 日韩一级成人av| 色婷婷亚洲一区二区三区| 国产精品白丝av| 美女www一区二区| 午夜精品福利视频网站| 尤物视频一区二区| 中文字幕一区二区三区色视频| 久久综合色婷婷| 日韩欧美国产不卡| 3d动漫精品啪啪1区2区免费 | 看电视剧不卡顿的网站| 亚洲chinese男男1069| 亚洲精品久久久蜜桃| 国产精品午夜电影| 欧美经典一区二区| 中文字幕精品三区| 日本一区二区免费在线| 国产农村妇女毛片精品久久麻豆| 精品国产一区久久| 2023国产精品自拍| 国产视频在线观看一区二区三区 | 欧美成人女星排行榜| 9191精品国产综合久久久久久| 欧美日韩国产精选| 欧美日韩你懂得| 91麻豆精品国产自产在线观看一区| 欧美午夜精品一区二区三区| 欧美性感一区二区三区| 欧美色精品在线视频| 欧美精品在欧美一区二区少妇| 欧美性生活久久| 欧美电影在线免费观看| 欧美日韩一卡二卡三卡| 日韩午夜在线影院| 久久午夜免费电影| 中文字幕亚洲一区二区va在线| 国产精品嫩草99a| 亚洲精品国产成人久久av盗摄| 亚洲欧美日韩国产中文在线| 亚洲午夜久久久| 日韩国产欧美一区二区三区| 麻豆一区二区99久久久久| 精品一区二区三区的国产在线播放| 国产精品一区二区黑丝| 不卡区在线中文字幕| 在线观看视频一区| 4438x成人网最大色成网站| 精品裸体舞一区二区三区| 国产视频一区二区在线观看| 自拍av一区二区三区| 亚洲国产一二三| 老司机免费视频一区二区三区| 国产91丝袜在线18| 在线观看日韩电影| 日韩一级完整毛片| 国产蜜臀av在线一区二区三区| 一区二区三区在线高清| 日韩制服丝袜av| 国产高清不卡一区二区| 欧美无乱码久久久免费午夜一区| 日韩欧美在线一区二区三区| 国产精品免费丝袜| 亚洲大片精品永久免费| 国产一区二区三区国产| 91麻豆精品一区二区三区| 91麻豆精品国产91久久久资源速度| 欧美成人猛片aaaaaaa| 亚洲欧美日韩久久| 精品一区二区三区久久| 91黄视频在线| 久久精品人人爽人人爽| 亚洲一级二级三级在线免费观看| 日本不卡视频在线观看| 99久久婷婷国产| 精品国产伦一区二区三区观看体验| 国产精品高清亚洲| 青青国产91久久久久久| 99re这里只有精品视频首页| 制服丝袜成人动漫| 国产精品视频一二三| 日日摸夜夜添夜夜添国产精品| 成人a免费在线看| 欧美成人aa大片| 亚洲国产裸拍裸体视频在线观看乱了| 国产精品99久久久久久久vr | 粉嫩av一区二区三区在线播放| 欧美日韩一卡二卡| 国产精品毛片久久久久久久| 美脚の诱脚舐め脚责91| 欧美综合欧美视频| 国产精品久线在线观看| 久久精品久久99精品久久| 欧美性色黄大片手机版| 亚洲婷婷综合久久一本伊一区| 国产精品综合视频| 日韩美一区二区三区| 亚洲va在线va天堂| 91麻豆免费看| 中文字幕在线播放不卡一区| 国产91精品露脸国语对白| 精品国产一区二区三区av性色| 性做久久久久久久免费看| 91黄色免费网站| 亚洲欧美日韩精品久久久久| 白白色 亚洲乱淫| 国产欧美日韩综合| 国产+成+人+亚洲欧洲自线| 26uuu另类欧美| 国产中文字幕精品| wwwwww.欧美系列| 国产美女久久久久| 2020国产精品久久精品美国| 精品在线播放免费| 日韩精品资源二区在线| 日韩av成人高清| 制服丝袜av成人在线看| 秋霞国产午夜精品免费视频| 91精品国产综合久久婷婷香蕉 | 国内精品在线播放| 精品久久久久久久久久久院品网| 日本不卡高清视频| 日韩一级二级三级| 老司机精品视频在线| 久久亚洲影视婷婷| 国产精品亚洲第一区在线暖暖韩国 | 国产精品毛片高清在线完整版| 国产高清精品网站| 国产精品国产三级国产普通话蜜臀 | 一区二区三区四区激情| 欧美视频一区在线| 日产国产欧美视频一区精品 | 一区二区在线观看av| 欧美性生活大片视频| 日本vs亚洲vs韩国一区三区| 精品国精品自拍自在线| 国产ts人妖一区二区| 亚洲色图欧美偷拍| 欧美日韩视频一区二区| 免费欧美高清视频| 国产欧美综合在线观看第十页| 成人黄色777网| 亚洲午夜私人影院| 欧美大片日本大片免费观看| 国产精品一区二区久久不卡| 中文字幕亚洲一区二区av在线| 在线精品国精品国产尤物884a| 日韩精品免费视频人成| 久久午夜国产精品| 91麻豆自制传媒国产之光| 婷婷中文字幕综合| 精品免费国产一区二区三区四区| 成人激情av网| 亚洲成人av中文| 久久精品亚洲精品国产欧美kt∨ | av在线不卡免费看| 亚洲高清视频的网址| 久久一区二区三区四区| 91麻豆蜜桃一区二区三区| 日本不卡一区二区| 中文字幕精品一区| 欧美美女激情18p| 成人av资源站| 亚洲bt欧美bt精品777| 国产日韩精品一区二区三区在线| 91福利视频网站| 精品亚洲免费视频| 亚洲日本护士毛茸茸| 日韩午夜在线播放| 色欧美乱欧美15图片| 韩国v欧美v日本v亚洲v| 亚洲精品一二三区| 久久久精品国产免大香伊| 欧美色偷偷大香| av动漫一区二区| 国产一区在线观看视频| 亚洲午夜激情av| 欧美激情在线一区二区三区| 欧美一区二区在线不卡| 99精品黄色片免费大全| 国产乱码精品一区二区三区av| 亚洲成精国产精品女| 中文字幕在线免费不卡| 久久九九99视频| 日韩精品一区二区三区中文精品|