亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
% Started 09/15/97%\shortnote\lefthead{Fomel \& Claerbout}\righthead{Implicit extrapolation}\title{Exploring three-dimensional implicit wavefield extrapolation  with the helix transform}\email{sergey@sep.stanford.edu, jon@sep.stanford.edu}%\keywords{depth migration, post-stack, finite-difference, velocity continuation, helix}\author{Sergey Fomel and Jon F. Claerbout}\maketitle\begin{abstract}  Implicit extrapolation is an efficient and unconditionally stable  method of wavefield continuation. Unfortunately, implicit wave  extrapolation in three dimensions requires an expensive solution of  a large system of linear equations. However, by mapping the  computational domain into one dimension via the helix transform, we  show that the matrix inversion problem can be recast in terms of an  efficient recursive filtering. Apart from the boundary conditions,  the solution is exact in the case of constant coefficients (that is,  a laterally homogeneous velocity.) We illustrate this fact with an  example of three-dimensional velocity continuation and discuss  possible ways of attacking the problem of lateral variations.\end{abstract}\section{Introduction}Implicit finite-difference wavefield extrapolation played anexceptionally important role in the early development of seismicmigration methods. Using limited-degree approximations to the one-waywave equation, implicit schemes have provided efficient andunconditionally stable numerical wave extrapolation operators\cite[]{Godfrey.sep.16.83,Claerbout.blackwell.85}. Unfortunately, theadvantages of \emph{implicit} methods were lost with the developmentof three-dimensional seismic exploration. While the cost of 2-Dimplicit extrapolation is linearly proportional to the mesh size, thesame approach, applied in the 3-D case, leads to a nonlinearcomputational complexity. Primarily for this reason, implicitextrapolators were replaced in practice by \emph{explicit} ones,capable of maintaining linear complexity in all dimensions. A numberof computational tricks \cite[]{GEO56-11-17701777} allow the commonlyused explicit schemes to behave stably in practical cases.  However,their stability is not unconditional and may break in unusualsituations \cite[]{SEG-1994-1266}.\parIn this paper, we present an approach to three-dimensionalextrapolation, based on the helix transform of multidimensionalfilters to one dimension \cite[]{Claerbout.gem.97}. The traditionalapproach involves an inversion of a banded matrix (tridiagonal in the2-D case and blocked-tridiagonal in the 3-D case). With the help ofthe helix transform, we can recast this problem in terms of inverserecursive filtering.  The coefficients of two-dimensional filters on ahelix are obtained by one-dimensional spectral factorization methods.As a result, the complexity of three-dimensional implicitextrapolation is reduced to a linear function of the computationalmesh size. This approach doesn't provide an exact solution in thepresence of lateral velocity variations. Nevertheless, it can be usedfor preconditioning iterative methods, such as those described by\cite{Nichols.sep.70.31}.  In this paper, we demonstrate thefeasibility of 3-D implicit extrapolation on the example of laterallyinvariant velocity continuation and, in the final part, discusspossible strategies for solving the problem of lateral variations.\parThe main application of finite-difference wave extrapolation is\emph{post-stack} depth migration. An application of similar methodsfor \emph{prestack} common-shot migration is constrained by thelimited aperture of commonly used seismic acquisition patterns.Recently developed acquisition methods, such as the vertical cabletechnique \cite[]{SEG-1993-1376}, open up new possibilities for 3-D waveextrapolation applications. An alternative approach is common-azimuthmigration \cite[]{Biondi.sep.80.109,Biondi.sep.93.1}. Other interestingapplications include finite-difference data extrapolation in offset\cite[]{Fomel.sep.84.179}, migration velocity \cite[]{Fomel.sep.92.159},and anisotropy \cite[]{Alkhalifah.sep.94.tariq3}.\section{Implicit versus Explicit extrapolation}The difference between implicit and explicit extrapolation is bestunderstood through an example. Following \cite{Claerbout.blackwell.85},let us consider, for instance, the diffusion (heat conduction) equationof the form\begin{equation}  {\frac{\partial T}{\partial t}} = {a (x)\,{\frac{\partial^2 T}{\partial x^2}}}\;.\label{eqn:heat}\end{equation}Here $t$ denotes time, $x$ is the space coordinate, $T (x,t)$ is thetemperature, and $a$ is the heat conductivity coefficient.Equation (\ref{eqn:heat}) forms a well-posed boundary-value problem ifsupplied with the initial condition\begin{equation}  \label{eqn:heatinit}  \left.T\right|_{t=0} = T_0 (x)\end{equation}and the appropriate boundary conditions. Our task is to build adigital filter, which transforms a gridded temperature $T$ from onetime level to another.\parIt helps to note that when the conductivity coefficient $a$ isconstant and the space domain of the problem is infinite (or periodic)in $x$, the problem can be solved in the wavenumber domain. Indeed,after the Fourier transform over the variable $x$, equation(\ref{eqn:heat}) transforms to the ordinary differential equation\begin{equation}  {\frac{d \hat{T}}{d t}} = {- a k^2\, \hat{T}}\;,  \label{eqn:heatk}	\end{equation}which has the explicit analytical solution\begin{equation}  \label{eqn:heatsol}  \hat{T} (k,t) = \hat{T}_0 (k) e^{- a k^2 t}\;,\end{equation}where $\hat{T}$ denotes the Fourier transform of $T$, and $k$ standsfor the wavenumber. Therefore, the desired filter in thewavenumber domain has the form\begin{equation}  \label{eqn:heatf}  H (k) = e^{- a k^2}\;,\end{equation}where for simplicity the coefficient $a$ is normalized for the timestep $\triangle t$ equal to $1$.\parReturning now to the time-and-space domain, we can approach the filterconstruction problem by approximating the space-domain response offilter (\ref{eqn:heatf}) in terms of the differential operators$\frac{\partial^2}{\partial x^2} = - k^2$, which can be approximatedby finite differences. An \emph{explicit} approach would amount toconstructing a series expansion of the form\begin{equation}  \label{eqn:heatexpl}  H_{\mbox{ex}} (k) \approx a_0 + a_1 k^2 + a_2 k^4 + \ldots\;,\end{equation}and selecting the coefficients $a_j$ to approximate equation(\ref{eqn:heatf}). For example, the three-term Taylor series expansionaround the zero wavenumber yields\begin{equation}  \label{eqn:heattayl}  H_{\mbox{ex}} (k) = 1 - a\,{k^2}  +  {\frac{{{a }^2}\,{k^4}}{2}} \;.\end{equation}The error of approximation (\ref{eqn:heattayl}) as a function of $k$for two different values of $a$ is shown in the left plot of Figure\ref{fig:error}.\inputdir{Math}\plot{error}{width=6in}{Errors of second-order explicit and implicit  approximations for the heat extrapolation.}\parAn \emph{implicit} approach also approximates the ideal filter(\ref{eqn:heatf}), but with a rational approximation of the form\begin{equation}  \label{eqn:heatpade}  H_{\mbox{im}} (k) \approx \frac{b_0 + b_1 k^2 + b_2 k^4 + \ldots}  {1 + c_1 k^2 + c_2 k^4 + \ldots}\;.\end{equation}One way of selecting the coefficients $b_i$ and $c_i$ is to apply anappropriate Pad\'{e} approximation \cite[]{pade}\footnote{If the  denominator and the numerator have the same order, Pad\'{e}  approximants are equivalent to the corresponding continuous  fraction expansions.}.  For example the $[2/2]$ Pad\'{e}approximation is\begin{equation}  \label{eqn:heatcrank}  H_{\mbox{im}} (k) =  \frac{1 - \frac{a}{2}\,k^2}{1 + \frac{a}{2}\,k^2}  \;.\end{equation}This approximation corresponds to the famous Crank-Nicolson implicitmethod \cite[]{cn}. The error of approximation (\ref{eqn:heatcrank}) asa function of $k$ for different values of $a$ is shown in the rightplot of Figure \ref{fig:error}. Not only is it significantly smallerthan the error of the same-order explicit approximation, but it alsohas a negative sign. It means that the high-frequency numerical noisegets suppressed rather than amplified. In practice, this propertytranslates into a stable numerical extrapolation.\parThe second derivative operator $-k^2$ can be approximated in practiceby a digital filter. The most commonly used filter has the$Z$-transform $D_2 (Z) = -Z^{-1} + 2 - Z$, and the Fourier transform\begin{equation}  \label{eqn:d2k}  D_2 (k) = e^{-ik} - 2 + e^{-ik} = 2 (\cos{k} - 1) = -4  \sin^2{\frac{k}{2}}\;.\end{equation}Formula (\ref{eqn:d2k}) approximates $-k^2$ well only for smallwavenumbers $k$. As shown in Appendix A, the implicit scheme allowsthe accuracy of the second-derivative filter to be significantlyimproved by a variation of the ``1/6-th trick''\cite[]{Claerbout.blackwell.85}. The final form of the implicitextrapolation filter is\begin{equation}  \label{eqn:heatfk}   H_{\mbox{im}} (k) =   \frac{1 + \frac{a+\beta}{2}\,D_2 (k)}{1 - \frac{a-\beta}{2}\,D_2 (k)}   \;,\end{equation}where $\beta$ is a numerical constant, found in Appendix A.\inputdir{heat}\plot{heat}{width=6in,height=2.5in}{Heat extrapolation with explicit  and implicit finite-different schemes. Explicit extrapolation  appears stable for $a=2/3$ (left plot) and unstable for $a=4/3$  (middle plot). Implicit interpolation is stable even for larger  values of $a$ (right plot).}\parA numerical 1-D example is shown in Figure \ref{fig:heat}. The initialtemperature distribution is given by a step function. Thediscontinuity at the step gets smoothed with time by the heatdiffusion. The left plot shows the result of an explicit extrapolationwith $a=2/3$, which appears stable. The middle plot is an explicitextrapolation with $a=4/3$, which shows a terribly unstable behavior:the high-frequency numerical noise is amplified and dominates thesolution. The right plot shows a stable (though not perfectlyaccurate) extrapolation with the implicit scheme for the larger value of$a=2$.\parThe difference in stability between explicit and implicit schemes iseven more pronounced in the case of \emph{wave extrapolation}. Forexample, let us consider the ideal depth extrapolation filter in theform of the phase-shift operator\cite[]{GEO43-07-13421351,Claerbout.blackwell.85}\begin{equation}  \label{eqn:gazdag}  W (k) = e^{i \sqrt{a^2 - k^2}}\;,\end{equation}where $a = \omega / v$, $\omega$ is the time frequency, and $v$ is theseismic velocity (which may vary spatially); we assume for simplicitythat both the depth step $\triangle z$ and the space sampling$\triangle x$ are normalized to $1$.  A simple implicit approximationto filter (\ref{eqn:gazdag}) is\begin{equation}  \label{eqn:wave45}   W_{\mbox{im}} (k) = e^{i a}\,   \frac{1 -4 a^2 + i a\,k^2}{1 - 4 a^2 - i a\,k^2} = e^{i \phi}\;,\end{equation}where $\phi = a - 2 \arctan{\frac{a\,k^2}{4 a^2-1}}$. We can seethat approximation (\ref{eqn:wave45}) is again a pure phase shiftoperator, only with a slightly different phase. For that reason, theoperator is unconditionally stable for all values of $a$: the totalwave energy from one depth level to another is preserved. Operator(\ref{eqn:gazdag}) corresponds to the Crank-Nicolson scheme for the45-degree one-way wave equation \cite[]{Claerbout.blackwell.85}. Itsphase error as a function of the dip angle $\theta =\arcsin{\frac{k}{a}}$ for different values of $a$ is shown in Figure\ref{fig:phase}.\inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99麻豆久久久国产精品免费| 精品福利一区二区三区免费视频| 中文字幕在线不卡| 国产·精品毛片| ...中文天堂在线一区| 91啪亚洲精品| 亚洲成va人在线观看| 欧美人动与zoxxxx乱| 天天爽夜夜爽夜夜爽精品视频| 欧美日韩一区二区三区视频| 天堂影院一区二区| 日韩网站在线看片你懂的| 国产美女视频一区| 亚洲视频1区2区| 欧美日本一道本在线视频| 免费不卡在线视频| 国产婷婷色一区二区三区在线| 不卡av电影在线播放| 亚洲精品久久7777| 日韩一区二区在线观看视频| 国产精品99久久久| 亚洲六月丁香色婷婷综合久久| 欧美亚洲动漫制服丝袜| 蜜乳av一区二区| 国产精品成人在线观看| 欧美日韩成人在线| 国产成人在线电影| 美国三级日本三级久久99| 国产亚洲精品福利| 欧美日韩一级视频| 国产盗摄精品一区二区三区在线 | 在线不卡免费欧美| 国产精品亚洲午夜一区二区三区| 亚洲欧美国产77777| 日韩一级高清毛片| 色狠狠一区二区三区香蕉| 毛片不卡一区二区| 亚洲美女屁股眼交| 久久婷婷成人综合色| 欧美视频一区二区三区在线观看 | 欧美日韩精品专区| 成人午夜免费电影| 日本aⅴ亚洲精品中文乱码| 亚洲国产精品黑人久久久| 欧美日韩小视频| 国产a区久久久| 日本不卡123| 亚洲国产日日夜夜| 国产精品伦理在线| 欧美精品一区男女天堂| 欧美日韩一区视频| 色老综合老女人久久久| 国产成人午夜99999| 人妖欧美一区二区| 亚洲国产综合视频在线观看| 国产精品美女久久久久久久| 2020国产精品| 欧美成人三级在线| 在线播放视频一区| 欧美日韩一区视频| 欧美丝袜丝nylons| 欧美色网一区二区| 欧美性猛片xxxx免费看久爱| 色香色香欲天天天影视综合网| 国产成人综合在线| 激情六月婷婷久久| 另类小说欧美激情| 奇米综合一区二区三区精品视频 | 精品美女在线播放| 91精品中文字幕一区二区三区| 欧美亚洲一区二区在线| 91免费小视频| 91麻豆国产福利精品| 成人av电影在线| 成人免费观看男女羞羞视频| 国产成人av电影| 丰满岳乱妇一区二区三区| 国产成人三级在线观看| 成人做爰69片免费看网站| 99视频热这里只有精品免费| 成人免费视频国产在线观看| 国产99久久久精品| 成年人网站91| 色婷婷国产精品久久包臀| 在线观看中文字幕不卡| 欧美视频一区二区在线观看| 欧美老人xxxx18| 日韩午夜电影在线观看| 国产午夜精品一区二区| 国产精品麻豆网站| 依依成人精品视频| 亚洲国产美女搞黄色| 男人的j进女人的j一区| 国产伦精品一区二区三区视频青涩 | 久久精品亚洲麻豆av一区二区 | 一区在线观看免费| 亚洲一区二区不卡免费| 日韩av电影免费观看高清完整版在线观看 | 最新热久久免费视频| 亚洲影院免费观看| 蜜桃av一区二区三区电影| 国产激情精品久久久第一区二区 | youjizz国产精品| 在线亚洲人成电影网站色www| 欧美色偷偷大香| 欧美成va人片在线观看| 中文字幕免费一区| 亚洲一区二区三区四区在线 | 欧美日本一区二区三区四区| 欧美成人一区二区三区| 国产精品你懂的在线| 一区二区免费看| 另类欧美日韩国产在线| 成人激情图片网| 欧美日韩国产小视频| 久久久久久久久久久久久夜| 亚洲欧美日韩一区二区| 免费久久99精品国产| 久久日韩粉嫩一区二区三区| 91黄色免费版| 色视频欧美一区二区三区| 中文字幕精品在线不卡| 国产精品正在播放| 欧洲一区在线电影| 精品国产免费人成电影在线观看四季 | 成人精品高清在线| 91精品国产综合久久久蜜臀图片| 国产目拍亚洲精品99久久精品 | 青草av.久久免费一区| 成人h动漫精品一区二| 欧美一区二区视频在线观看 | 亚洲精品老司机| 福利一区二区在线| 日韩一区二区三区精品视频 | 欧美一区三区二区| 亚洲欧洲日韩av| 韩国女主播一区| 欧美久久久一区| 亚洲人成在线播放网站岛国| 韩国在线一区二区| 日韩黄色一级片| 国产成人综合网站| 欧美日韩精品二区第二页| 国产精品午夜久久| 国产自产高清不卡| 这里只有精品99re| 夜夜精品视频一区二区| 成人综合婷婷国产精品久久免费| 日韩欧美在线网站| 亚洲大片精品永久免费| 在线观看日韩高清av| 国产精品国产三级国产aⅴ入口 | 欧美日韩大陆一区二区| 亚洲精品久久久蜜桃| 成人中文字幕合集| 国产亚洲一区二区三区四区| 久久国产精品露脸对白| 日韩精品一区二区三区中文不卡 | 成人在线综合网| 国产欧美日韩在线| 精品日韩一区二区三区| 97精品电影院| 精品国一区二区三区| 国产精品三级av| 国产电影一区在线| 久久久精品免费免费| 国产在线精品一区二区夜色| 日韩免费在线观看| 韩国成人福利片在线播放| 欧美本精品男人aⅴ天堂| 紧缚捆绑精品一区二区| 精品999在线播放| 国产在线精品一区二区| 久久久久国产精品麻豆| 高清视频一区二区| 亚洲欧美色一区| 在线免费亚洲电影| 亚洲成人7777| 日韩三级伦理片妻子的秘密按摩| 免费日本视频一区| 26uuu色噜噜精品一区二区| 国产精一品亚洲二区在线视频| 久久精品亚洲麻豆av一区二区| 成人午夜电影久久影院| 亚洲色图第一区| 在线观看区一区二| 欧美96一区二区免费视频| 久久免费看少妇高潮| 成人亚洲一区二区一| 亚洲品质自拍视频| 欧美精选一区二区| 韩国三级电影一区二区| 亚洲欧美怡红院| 91.成人天堂一区| 国产一区二区三区免费观看| 亚洲欧美日韩小说| 日韩一区二区三区精品视频| 福利一区福利二区| 亚洲妇熟xx妇色黄| 久久综合一区二区|