亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
% Started 09/15/97%\shortnote\lefthead{Fomel \& Claerbout}\righthead{Implicit extrapolation}\title{Exploring three-dimensional implicit wavefield extrapolation  with the helix transform}\email{sergey@sep.stanford.edu, jon@sep.stanford.edu}%\keywords{depth migration, post-stack, finite-difference, velocity continuation, helix}\author{Sergey Fomel and Jon F. Claerbout}\maketitle\begin{abstract}  Implicit extrapolation is an efficient and unconditionally stable  method of wavefield continuation. Unfortunately, implicit wave  extrapolation in three dimensions requires an expensive solution of  a large system of linear equations. However, by mapping the  computational domain into one dimension via the helix transform, we  show that the matrix inversion problem can be recast in terms of an  efficient recursive filtering. Apart from the boundary conditions,  the solution is exact in the case of constant coefficients (that is,  a laterally homogeneous velocity.) We illustrate this fact with an  example of three-dimensional velocity continuation and discuss  possible ways of attacking the problem of lateral variations.\end{abstract}\section{Introduction}Implicit finite-difference wavefield extrapolation played anexceptionally important role in the early development of seismicmigration methods. Using limited-degree approximations to the one-waywave equation, implicit schemes have provided efficient andunconditionally stable numerical wave extrapolation operators\cite[]{Godfrey.sep.16.83,Claerbout.blackwell.85}. Unfortunately, theadvantages of \emph{implicit} methods were lost with the developmentof three-dimensional seismic exploration. While the cost of 2-Dimplicit extrapolation is linearly proportional to the mesh size, thesame approach, applied in the 3-D case, leads to a nonlinearcomputational complexity. Primarily for this reason, implicitextrapolators were replaced in practice by \emph{explicit} ones,capable of maintaining linear complexity in all dimensions. A numberof computational tricks \cite[]{GEO56-11-17701777} allow the commonlyused explicit schemes to behave stably in practical cases.  However,their stability is not unconditional and may break in unusualsituations \cite[]{SEG-1994-1266}.\parIn this paper, we present an approach to three-dimensionalextrapolation, based on the helix transform of multidimensionalfilters to one dimension \cite[]{Claerbout.gem.97}. The traditionalapproach involves an inversion of a banded matrix (tridiagonal in the2-D case and blocked-tridiagonal in the 3-D case). With the help ofthe helix transform, we can recast this problem in terms of inverserecursive filtering.  The coefficients of two-dimensional filters on ahelix are obtained by one-dimensional spectral factorization methods.As a result, the complexity of three-dimensional implicitextrapolation is reduced to a linear function of the computationalmesh size. This approach doesn't provide an exact solution in thepresence of lateral velocity variations. Nevertheless, it can be usedfor preconditioning iterative methods, such as those described by\cite{Nichols.sep.70.31}.  In this paper, we demonstrate thefeasibility of 3-D implicit extrapolation on the example of laterallyinvariant velocity continuation and, in the final part, discusspossible strategies for solving the problem of lateral variations.\parThe main application of finite-difference wave extrapolation is\emph{post-stack} depth migration. An application of similar methodsfor \emph{prestack} common-shot migration is constrained by thelimited aperture of commonly used seismic acquisition patterns.Recently developed acquisition methods, such as the vertical cabletechnique \cite[]{SEG-1993-1376}, open up new possibilities for 3-D waveextrapolation applications. An alternative approach is common-azimuthmigration \cite[]{Biondi.sep.80.109,Biondi.sep.93.1}. Other interestingapplications include finite-difference data extrapolation in offset\cite[]{Fomel.sep.84.179}, migration velocity \cite[]{Fomel.sep.92.159},and anisotropy \cite[]{Alkhalifah.sep.94.tariq3}.\section{Implicit versus Explicit extrapolation}The difference between implicit and explicit extrapolation is bestunderstood through an example. Following \cite{Claerbout.blackwell.85},let us consider, for instance, the diffusion (heat conduction) equationof the form\begin{equation}  {\frac{\partial T}{\partial t}} = {a (x)\,{\frac{\partial^2 T}{\partial x^2}}}\;.\label{eqn:heat}\end{equation}Here $t$ denotes time, $x$ is the space coordinate, $T (x,t)$ is thetemperature, and $a$ is the heat conductivity coefficient.Equation (\ref{eqn:heat}) forms a well-posed boundary-value problem ifsupplied with the initial condition\begin{equation}  \label{eqn:heatinit}  \left.T\right|_{t=0} = T_0 (x)\end{equation}and the appropriate boundary conditions. Our task is to build adigital filter, which transforms a gridded temperature $T$ from onetime level to another.\parIt helps to note that when the conductivity coefficient $a$ isconstant and the space domain of the problem is infinite (or periodic)in $x$, the problem can be solved in the wavenumber domain. Indeed,after the Fourier transform over the variable $x$, equation(\ref{eqn:heat}) transforms to the ordinary differential equation\begin{equation}  {\frac{d \hat{T}}{d t}} = {- a k^2\, \hat{T}}\;,  \label{eqn:heatk}	\end{equation}which has the explicit analytical solution\begin{equation}  \label{eqn:heatsol}  \hat{T} (k,t) = \hat{T}_0 (k) e^{- a k^2 t}\;,\end{equation}where $\hat{T}$ denotes the Fourier transform of $T$, and $k$ standsfor the wavenumber. Therefore, the desired filter in thewavenumber domain has the form\begin{equation}  \label{eqn:heatf}  H (k) = e^{- a k^2}\;,\end{equation}where for simplicity the coefficient $a$ is normalized for the timestep $\triangle t$ equal to $1$.\parReturning now to the time-and-space domain, we can approach the filterconstruction problem by approximating the space-domain response offilter (\ref{eqn:heatf}) in terms of the differential operators$\frac{\partial^2}{\partial x^2} = - k^2$, which can be approximatedby finite differences. An \emph{explicit} approach would amount toconstructing a series expansion of the form\begin{equation}  \label{eqn:heatexpl}  H_{\mbox{ex}} (k) \approx a_0 + a_1 k^2 + a_2 k^4 + \ldots\;,\end{equation}and selecting the coefficients $a_j$ to approximate equation(\ref{eqn:heatf}). For example, the three-term Taylor series expansionaround the zero wavenumber yields\begin{equation}  \label{eqn:heattayl}  H_{\mbox{ex}} (k) = 1 - a\,{k^2}  +  {\frac{{{a }^2}\,{k^4}}{2}} \;.\end{equation}The error of approximation (\ref{eqn:heattayl}) as a function of $k$for two different values of $a$ is shown in the left plot of Figure\ref{fig:error}.\inputdir{Math}\plot{error}{width=6in}{Errors of second-order explicit and implicit  approximations for the heat extrapolation.}\parAn \emph{implicit} approach also approximates the ideal filter(\ref{eqn:heatf}), but with a rational approximation of the form\begin{equation}  \label{eqn:heatpade}  H_{\mbox{im}} (k) \approx \frac{b_0 + b_1 k^2 + b_2 k^4 + \ldots}  {1 + c_1 k^2 + c_2 k^4 + \ldots}\;.\end{equation}One way of selecting the coefficients $b_i$ and $c_i$ is to apply anappropriate Pad\'{e} approximation \cite[]{pade}\footnote{If the  denominator and the numerator have the same order, Pad\'{e}  approximants are equivalent to the corresponding continuous  fraction expansions.}.  For example the $[2/2]$ Pad\'{e}approximation is\begin{equation}  \label{eqn:heatcrank}  H_{\mbox{im}} (k) =  \frac{1 - \frac{a}{2}\,k^2}{1 + \frac{a}{2}\,k^2}  \;.\end{equation}This approximation corresponds to the famous Crank-Nicolson implicitmethod \cite[]{cn}. The error of approximation (\ref{eqn:heatcrank}) asa function of $k$ for different values of $a$ is shown in the rightplot of Figure \ref{fig:error}. Not only is it significantly smallerthan the error of the same-order explicit approximation, but it alsohas a negative sign. It means that the high-frequency numerical noisegets suppressed rather than amplified. In practice, this propertytranslates into a stable numerical extrapolation.\parThe second derivative operator $-k^2$ can be approximated in practiceby a digital filter. The most commonly used filter has the$Z$-transform $D_2 (Z) = -Z^{-1} + 2 - Z$, and the Fourier transform\begin{equation}  \label{eqn:d2k}  D_2 (k) = e^{-ik} - 2 + e^{-ik} = 2 (\cos{k} - 1) = -4  \sin^2{\frac{k}{2}}\;.\end{equation}Formula (\ref{eqn:d2k}) approximates $-k^2$ well only for smallwavenumbers $k$. As shown in Appendix A, the implicit scheme allowsthe accuracy of the second-derivative filter to be significantlyimproved by a variation of the ``1/6-th trick''\cite[]{Claerbout.blackwell.85}. The final form of the implicitextrapolation filter is\begin{equation}  \label{eqn:heatfk}   H_{\mbox{im}} (k) =   \frac{1 + \frac{a+\beta}{2}\,D_2 (k)}{1 - \frac{a-\beta}{2}\,D_2 (k)}   \;,\end{equation}where $\beta$ is a numerical constant, found in Appendix A.\inputdir{heat}\plot{heat}{width=6in,height=2.5in}{Heat extrapolation with explicit  and implicit finite-different schemes. Explicit extrapolation  appears stable for $a=2/3$ (left plot) and unstable for $a=4/3$  (middle plot). Implicit interpolation is stable even for larger  values of $a$ (right plot).}\parA numerical 1-D example is shown in Figure \ref{fig:heat}. The initialtemperature distribution is given by a step function. Thediscontinuity at the step gets smoothed with time by the heatdiffusion. The left plot shows the result of an explicit extrapolationwith $a=2/3$, which appears stable. The middle plot is an explicitextrapolation with $a=4/3$, which shows a terribly unstable behavior:the high-frequency numerical noise is amplified and dominates thesolution. The right plot shows a stable (though not perfectlyaccurate) extrapolation with the implicit scheme for the larger value of$a=2$.\parThe difference in stability between explicit and implicit schemes iseven more pronounced in the case of \emph{wave extrapolation}. Forexample, let us consider the ideal depth extrapolation filter in theform of the phase-shift operator\cite[]{GEO43-07-13421351,Claerbout.blackwell.85}\begin{equation}  \label{eqn:gazdag}  W (k) = e^{i \sqrt{a^2 - k^2}}\;,\end{equation}where $a = \omega / v$, $\omega$ is the time frequency, and $v$ is theseismic velocity (which may vary spatially); we assume for simplicitythat both the depth step $\triangle z$ and the space sampling$\triangle x$ are normalized to $1$.  A simple implicit approximationto filter (\ref{eqn:gazdag}) is\begin{equation}  \label{eqn:wave45}   W_{\mbox{im}} (k) = e^{i a}\,   \frac{1 -4 a^2 + i a\,k^2}{1 - 4 a^2 - i a\,k^2} = e^{i \phi}\;,\end{equation}where $\phi = a - 2 \arctan{\frac{a\,k^2}{4 a^2-1}}$. We can seethat approximation (\ref{eqn:wave45}) is again a pure phase shiftoperator, only with a slightly different phase. For that reason, theoperator is unconditionally stable for all values of $a$: the totalwave energy from one depth level to another is preserved. Operator(\ref{eqn:gazdag}) corresponds to the Crank-Nicolson scheme for the45-degree one-way wave equation \cite[]{Claerbout.blackwell.85}. Itsphase error as a function of the dip angle $\theta =\arcsin{\frac{k}{a}}$ for different values of $a$ is shown in Figure\ref{fig:phase}.\inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久精品噜噜噜成人88aⅴ | 欧美精品一区二区久久婷婷| 激情都市一区二区| 一区二区三区日本| 国产亚洲1区2区3区| 欧美精品tushy高清| 成人av网站在线观看免费| 亚洲成人av一区| 国产精品国产自产拍高清av| 欧美大片在线观看一区二区| 在线观看欧美日本| eeuss鲁片一区二区三区在线看| 免费一级欧美片在线观看| 亚洲综合激情网| 国产精品久久久久一区| 日韩欧美一卡二卡| 欧美在线不卡一区| 91社区在线播放| 成人精品国产一区二区4080| 伦理电影国产精品| 日韩成人免费在线| 亚洲国产精品精华液网站| 国产精品无圣光一区二区| 2023国产一二三区日本精品2022| 欧美久久久久久蜜桃| 91黄色在线观看| 日本精品视频一区二区| 成人免费黄色大片| 成人av先锋影音| 成人午夜激情在线| 国产成人精品免费一区二区| 国精品**一区二区三区在线蜜桃| 亚洲一区二区三区四区在线免费观看 | 91国产成人在线| 成人av网址在线观看| 国产成人精品亚洲午夜麻豆| 国产成人av自拍| 国产精品羞羞答答xxdd| 久久99国产精品久久99果冻传媒| 日日骚欧美日韩| 五月天一区二区| 午夜激情一区二区| 天天操天天色综合| 首页国产丝袜综合| 丝袜亚洲精品中文字幕一区| 亚洲国产精品一区二区www在线| 亚洲图片欧美综合| 水野朝阳av一区二区三区| 天天色综合成人网| 久久精品国产一区二区| 久久精品国产在热久久| 国产乱一区二区| av一区二区久久| 色综合天天性综合| 欧美日韩五月天| 日韩欧美国产综合| 国产欧美一二三区| 一区二区在线观看视频| 亚洲一卡二卡三卡四卡无卡久久| 午夜精品久久久久久不卡8050| 久久精品久久99精品久久| 国产精品1区2区3区在线观看| 成人激情免费网站| 欧美伊人久久久久久久久影院| 欧美日韩一级二级三级| 欧美xfplay| 成人免费在线播放视频| 亚洲香肠在线观看| 精品一区二区三区在线观看| 国产福利一区二区三区视频| av电影天堂一区二区在线| 在线观看成人小视频| 欧美二区乱c少妇| 久久精品日产第一区二区三区高清版 | 国产一区二区三区美女| 9i在线看片成人免费| 欧美色图免费看| 欧美一区二区二区| 欧美激情一区二区三区蜜桃视频| 亚洲色图制服诱惑 | 国产农村妇女精品| 一区二区三区资源| 蜜臀va亚洲va欧美va天堂 | 国产精品久久夜| 亚洲成人综合网站| 国内精品久久久久影院一蜜桃| 97精品电影院| 精品区一区二区| 亚洲欧洲中文日韩久久av乱码| 日本不卡不码高清免费观看| 粉嫩av亚洲一区二区图片| 欧美日韩一区在线观看| 久久久久99精品国产片| 夜夜嗨av一区二区三区网页| 激情综合色播激情啊| 日本黄色一区二区| 国产欧美一区二区三区在线老狼| 亚洲一区二三区| 国产91丝袜在线播放| 欧美一区二区三区视频免费 | 亚洲午夜在线观看视频在线| 国产一区二三区| 欧美日韩视频在线观看一区二区三区 | 亚洲激情成人在线| 国产高清一区日本| 欧美一级片免费看| 中文字幕日本不卡| 国产裸体歌舞团一区二区| 欧美精品视频www在线观看 | 久久久五月婷婷| 五月天精品一区二区三区| fc2成人免费人成在线观看播放 | 国产精品原创巨作av| 欧美高清性hdvideosex| 亚洲三级理论片| 国产一区二区免费在线| 欧美一区二区精品久久911| 一区二区三区四区国产精品| 成人做爰69片免费看网站| 欧美tk丨vk视频| 奇米777欧美一区二区| 欧美一a一片一级一片| 国产精品传媒视频| 国产高清精品久久久久| 久久午夜老司机| 久久99这里只有精品| 在线播放日韩导航| 偷窥国产亚洲免费视频| 欧美三级资源在线| 亚洲一区二区偷拍精品| 91色九色蝌蚪| 国产精品福利一区| 成人av在线资源网站| 国产精品久久久久影视| 成人深夜福利app| 中文无字幕一区二区三区| 国产乱码精品1区2区3区| 精品国产一区二区三区久久久蜜月 | 亚洲欧美日韩久久| 91一区二区三区在线播放| 中文字幕一区二区三中文字幕| 国产大片一区二区| 久久久久九九视频| 国产伦精品一区二区三区视频青涩| 精品免费日韩av| 久久成人久久爱| 久久一区二区三区国产精品| 国产一区美女在线| 中文字幕欧美国产| 99国产精品一区| 亚洲黄色录像片| 欧美日韩高清一区| 卡一卡二国产精品| 国产日本欧洲亚洲| 91在线一区二区| 亚洲一区二区三区四区的| 69av一区二区三区| 国产在线精品一区二区夜色| 国产欧美日韩不卡免费| 91一区二区三区在线观看| 亚洲国产精品久久一线不卡| 日韩午夜小视频| 国产精品18久久久久久久网站| 1024成人网| 欧美日韩一区二区在线观看| 麻豆91在线看| 国产精品理论片在线观看| 欧美日韩一二区| 国产一区二区精品在线观看| 亚洲精品亚洲人成人网| 91精品国产综合久久久蜜臀图片| 国产一区二区毛片| 亚洲精品日日夜夜| 日韩欧美精品在线视频| 成人免费视频一区| 午夜精品久久久久久| 欧美韩日一区二区三区| 精品视频一区三区九区| 国产一区在线观看麻豆| 亚洲精品久久久久久国产精华液| 91精品国产综合久久婷婷香蕉 | 日韩一区二区三区av| 成人性生交大片免费看中文| 亚洲一区二区三区免费视频| 久久午夜电影网| 欧洲人成人精品| 国产一区二区三区精品视频| 亚洲高清在线精品| 欧美激情综合在线| 欧美一级专区免费大片| 成a人片国产精品| 蜜臀av在线播放一区二区三区| 国产精品久久久久久久久久免费看 | 99久久99久久精品国产片果冻| 日韩成人一级大片| 综合在线观看色| 久久综合国产精品| 欧美浪妇xxxx高跟鞋交| 国产91丝袜在线18| 精品一区二区三区欧美|