亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
\sideplot{phase}{width=2.5in}{The phase error of the  implicit depth extrapolation with the Crank-Nicolson method.}\parThe unconditional stability property is not achievable with theexplicit approach, though it is possible to increase the stability ofexplicit operators by using relatively long filters\cite[]{GPR36-02-00990114,GEO56-11-17701777}.\section{Spectral factorization and three-dimensional extrapolation}In this section, we continue our review of extrapolation methods toreveal the principal difficulties of three-dimensional extrapolation.We then describe a new, helix-transform approach to this old andfascinating problem.\subsection{Inverse filter factorization}The conventional way of applying implicit finite-difference schemesreduces to solving a system of linear equations with a sparse matrix.For example, to apply the scheme of equation (\ref{eqn:heatfk}), wecan put the filter denominator on the other side of the extrapolationequation, writing it as\begin{equation}  \label{eqn:heattris}  \left(\mathbf{I} - \frac{a-\beta}{2}\,\mathbf{D}_2\right) \mathbf{T}_{t+1} =  \left(\mathbf{I} + \frac{a+\beta}{2}\,\mathbf{D}_2\right) \mathbf{T}_t\;,\end{equation}where $\mathbf{I}$ is the identity matrix, $\mathbf{D}$ is the convolutionmatrix for filter (\ref{eqn:d2k}), and $\mathbf{T}_t$ is the vector oftemperature distribution at time level $t$. In the case oftwo-dimensional extrapolation, the matrix on the left side of equation(\ref{eqn:heattris}) takes the tridiagonal form\begin{equation}\label{eqn:matrix}  \mathbf{A} = \left(\mathbf{I} -c\,\mathbf{D}_2\right) =  \left[\begin{array}{cccccc}  1+2 c_{1}   & -c_{1}     &  0     & \cdots &        & 0      \\  -c_{2}     & 1+2c_{2}   & -c_{2}     & 0      & \cdots &        \\  0      & -c_{3}     & \cdots & \cdots &        & \cdots \\  \cdots & 0      & \cdots &        &        &        \\         & \cdots &        &        & \cdots & -c_{n-1}     \\  0      &        &        &        & -c_{n}     & 1 + 2c_{n}  \end{array}\right]\;,\end{equation}where $c = \frac{a-\beta}{2}$, and where, for simplicity, we assumezero-slope boundary conditions. Like any positive-definite tridiagonalmatrix, matrix $\mathbf{A}$ can be inverted recursively by an $LU$decomposition into two bidiagonal matrices. The cost of inversion isdirectly proportional to the number of vector components.  The sameconclusion holds for the case of depth extrapolation [equation(\ref{eqn:wave45})] with the substitution $c = \frac{\beta + i  a}{1-4\,a^2}$.\parIn the case of a laterally constant coefficient $a$, we can take adifferent point of view on the tridiagonal matrix inversion. In thiscase, the matrix $\mathbf{A}_2$ represents a convolution with asymmetric three-point filter $1-c\,D_2(k)$. The $LU$decomposition of such a matrix is precisely equivalent to filter\emph{factorization} into the product of a causal minimum-phase filterwith its adjoint. This conclusion can be confirmed by the easilyverified equality\begin{equation}\label{eqn:d2d1}  1 + c (Z^{-1} - 2 + Z) = \frac{(1+b)^2}{4}\, \left(1 + \frac{1-b}{1+b} Z\right)  \,\left(1 + \frac{1-b}{1+b} Z^{-1}\right)\;,\end{equation}where $b = \sqrt{1+ 4\,c}$. The inverse of the causal minimum-phasefilter $1 + \frac{1-b}{1+b} Z$ is a recursive inverse filter.Correspondingly, the inverse of its adjoint pair, $1 + \frac{1-b}{1+b}Z^{-1}$, is the same inverse filtering, performed in the adjoint mode(backwards in space).  In the next subsection, we show how thisapproach can be carried into three dimensions by applying the helixtransform.\subsection{Helix and multidimensional deconvolution}The major obstacle of applying an implicit extrapolation in threedimensions is that the inverted matrix is no longer tridiagonal. If weapproximate the second derivative (Laplacian) on the 2-D plane withthe commonly used five-point filter $Z_x^{-1} + Z_y^{-1} -4 + Z_x +Z_y$, then the matrix on the left side of equation(\ref{eqn:heattris}), under the usual mapping of vectors from atwo-dimensional mesh to one dimension, takes the infamousblocked-tridiagonal form \cite[]{birk}\begin{equation}\label{eqn:matrix2}  \tilde{\mathbf{A}} = \left(\mathbf{I} -c\,\mathbf{D}_2\right) =  \left[\begin{array}{cccccc}  \mathbf{A}_1   & -c_1 \,\mathbf{I}    &  0     & \cdots &        & 0      \\  -c_2 \,\mathbf{I}    & \mathbf{A}_2   & -c_2 \,\mathbf{I}    & 0      & \cdots &        \\  0      & -c_3 \,\mathbf{I}     & \cdots & \cdots &        & \cdots \\  \cdots & 0      & \cdots &        &        &        \\         & \cdots &        &        & \cdots & -c_{n-1} \,\mathbf{I}    \\  0      &        &        &        & -c_{n} \,\mathbf{I}    &  \mathbf{A}_n  \end{array}\right]\;.\end{equation}Inspecting this form more closely, we see that the main diagonal of$\tilde{\mathbf{A}}$, as well as the two offset diagonals formed by thescaled identity matrices, remains continuous, while the second top andbottom diagonals are broken. Therefore, even for constant $c$, theinverted matrix does not have a simple convolutional structure, andthe cost of its inversion grows nonlinearly with the number of gridpoints.\parA \emph{helix transform}, recently proposed by one of the authors\cite[]{Claerbout.sep.95.jon1}, sheds new light on this old problem.Let us assume that the extrapolation filter is applied by sliding italong the $x$ direction in the $\{x,y\}$ plane. The diagonaldiscontinuities in matrix $\tilde{\mathbf{A}}$ occur exactly in theplaces where the forward leg of the filter slides outside thecomputational domain. Let's imagine a situation, where the leg of thefilter that went to the end of the $x$ column, would immediatelyappear at the beginning of the next column. This situation defines adifferent mapping from two computational dimensions to the onedimension of linear algebra. The mapping can be understood as thehelix transform, illustrated in Figure \ref{fig:helix1} and explainedin detail by \cite{Claerbout.sep.95.jon1}. According to thistransform, we replace the original two-dimensional filter with a longone-dimensional filter. The new filter is partially filled with zerovalues (corresponding to the back side of the helix), which can besafely ignored in the convolutional computation.\plot{helix}{width=5in,bb=210 155 630 390}{The helix transform of  two-dimensional filters to one dimension. The two-dimensional filter  in the left plot is equivalent to the one-dimensional filter in the  right plot, assuming that a shifted periodic condition is imposed on  one of the axes.}\parThis is exactly the helix transform that is required to make all thediagonals of matrix $\tilde{\mathbf{A}}$ continuous. In the case oflaterally invariant coefficients, the matrix becomes strictly Toeplitz(having constant values along the diagonals) and represents aone-dimensional convolution on the helix surface. Moreover, thissimplified matrix structure applies equally well to largersecond-derivative filters ( such as those described in Appendix B),with the obvious increase of the number of Toeplitz diagonals.Inverting matrix $\tilde{\mathbf{A}}$ becomes once again a simpleinverse filtering problem.  To decompose the 2-D filter into a pairconsisting of a causal minimum-phase filter and its adjoint, we canapply spectral factorization methods from the 1-D filtering theory\cite[]{Claerbout.blackwell.76,Claerbout.blackwell.92}, for example,Kolmogorov's highly efficient method \cite[]{kolmog}. Thus, in the caseof a laterally invariant implicit extrapolation, matrix inversionreduces to a simple and efficient recursive filtering, which we needto run twice: first in the forward mode, and second in the adjointmode.\inputdir{heat}\plot{heat3d}{width=6in,height=2in}{Heat extrapolation in two  dimensions, computed by an implicit scheme with helix recursive  filtering. The left plot shows the input temperature distributions;  the two other plots, the extrapolation result at different time  steps.  The coefficient $a$ is 2.}\parFigure \ref{fig:heat3d} shows the result of applying the helixtransform to an implicit heat extrapolation of a two-dimensionaltemperature distribution. The unconditional stability properties arenicely preserved, which can be verified by examining the plot ofchanges in the average temperature (Figure \ref{fig:heat-mean}).\sideplot{heat-mean}{width=2.5in}{Demonstration of the stability of  implicit extrapolation. The solid curve shows the normalized mean  temperature, which remains nearly constant throughout the  extrapolation time. The dashed curve shows the normalized maximum  value, which exhibits the expected Gaussian shape.}\parIn principle, we could also treat the case of a laterally invariantcoefficient with the help of the Fourier transform. Under whatcircumstances does the helix approach have an advantage over Fouriermethods? One possible situation corresponds to a very large input datasize with a relatively small extrapolation filter. In this case, the$O(N log N)$ cost of the fast Fourier transform is comparable with the$O(N_f N)$ cost of the space-domain deconvolution (where $N$corresponds to the data size, and $N_f$ is the filter size). Anothersituation is when the boundary conditions of the problem have anessential lateral variation. The latter case may occur in applicationsof velocity continuation, which we discuss in the next section.  Laterin this paper, we return to the discussion of problems associated withlateral variations.\section{Three-dimensional implicit velocity continuation}\inputdir{vc3}Velocity continuation is a process of navigating in the migrationvelocity space, applicable for time migration, residual migration, andmigration velocity analysis \cite[]{Fomel.sep.92.159}. In thezero-offset (post-stack) case, the velocity continuation process isdescribed by the simple partial differential equation\cite[]{Claerbout.sep.48.79,me}\begin{equation}  {\frac{\partial^2 P}{\partial v\,\partial t}} +  {v\,t\,\left({\frac{\partial^2 P}{\partial x^2}} + {\frac{\partial^2      P}{\partial y^2}}\right)} = 0\;,\label{eqn:velcon}\end{equation}where $t$ is the vertical time coordinate of the migrated image, $x$and $y$ are spatial (midpoint) coordinates, and $v$ is the migrationvelocity. Slightly different versions of two-dimensional implicitextrapolation with equation (\ref{eqn:velcon}) have been described by\cite{Li.sep.48.85} and \cite[]{Fomel.sep.92.159}. \plot{velcon}{width=6in}{Impulse responses of the velocity  continuation operator, computed by an implicit, unconditionally  stable extrapolation via the helix transform. The left plot  corresponds to continuation towards higher velocities (migration  mode); the right plot, smaller velocities (modeling mode).}\parThe helix approach has allowed us to modify the old code for threedimensions. Figure \ref{fig:velcon} shows impulse responses of animplicit helix-based three-dimensional velocity continuation.\sideplot{qdome}{width=3in}{Qdome synthetic model, used for testing  the 3-D velocity continuation program.}\parFigure \ref{fig:modmig} illustrates the velocity continuation processon the Qdome synthetic model \cite[]{Claerbout.gem.97}, shown in Figure\ref{fig:qdome}. Continuation backward in velocity corresponds to the``modeling'' mode, while forward continuation corresponds to the``migration'' mode. It is possible to balance the amplitudes of thetwo processes so that the finite-difference velocity continuationbehaves as a unitary operator\cite[]{Fomel.sep.92.159,Fomel.sep.92.267}.\plot{modmig}{width=6in}{Modeling (left) and migration (right) with  the Qdome synthetic model, obtained by running the 3-D velocity  continuation backward and forward in velocity.}\section{Depth extrapolation and the v(x) challenge}Can the constant-velocity result help us achieve the challenging goalof a stable implicit depth extrapolation through media with lateralvelocity variations?\parThe first idea that comes to mind is to replace the space-invarianthelix filters with a precomputed set of spatially varying filters,which reflect local changes in the velocity fields. This approachwould merely reproduce the conventional practice of explicit depthextrapolators, popularized by \cite{GPR36-02-00990114} and\cite{GEO56-11-17701777}. However, it hides the danger of losingthe property of unconditional stability, which is obviously the majorasset of implicit extrapolators.\parAnother route, partially explored by \cite{Nichols.sep.70.31}, isto implement the matrix inversion in the three-dimensional implicitscheme by an iterative method. In this case, the helix inversion mayserve as a powerful preconditioner, providing an immediate answer inconstant velocity layers and speeding up the convergence in the caseof velocity variations. To see why this might be true, one can writethe variable-coefficient matrix $\tilde{\mathbf{A}}$ in the form\begin{equation}  \label{eqn:golub}  \tilde{\mathbf{A}} = \mathbf{B} + \mathbf{D}\;,\end{equation}where matrix $\mathbf{B}$ corresponds to some constant average velocity,and $\mathbf{D}$ is the matrix of velocity perturbations. The system oflinear equations that we need to solve is then

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产高清aⅴ视频| 午夜精品久久久久影视| 国产乱码精品一区二区三| 日韩精品中文字幕在线不卡尤物| 亚洲h在线观看| 91精品啪在线观看国产60岁| 蜜臀av性久久久久蜜臀aⅴ流畅| 日韩色在线观看| 国产一区视频导航| 亚洲国产精品激情在线观看| 99vv1com这只有精品| 亚洲一级电影视频| 欧美videofree性高清杂交| 一区二区在线免费| 国产精品午夜免费| 爽好多水快深点欧美视频| 亚洲成在人线免费| 国内精品免费**视频| 色综合久久久久久久| 日韩欧美黄色影院| 亚洲欧美一区二区三区国产精品| 蜜桃视频在线一区| 一本在线高清不卡dvd| 久久久一区二区三区捆绑**| 亚洲最大成人综合| 91在线无精精品入口| 精品剧情在线观看| 男人的天堂久久精品| 在线观看日韩国产| 亚洲成人免费在线| 91久久精品国产91性色tv| 亚洲国产精品成人综合色在线婷婷| 日本欧美一区二区三区| 欧美人xxxx| 石原莉奈在线亚洲三区| 欧美精品aⅴ在线视频| 亚洲成人自拍一区| 欧美日韩成人综合天天影院| 亚洲h精品动漫在线观看| 欧美撒尿777hd撒尿| 五月激情丁香一区二区三区| 欧美剧情电影在线观看完整版免费励志电影 | 亚洲欧美国产高清| 国产一区二区在线看| 日韩丝袜情趣美女图片| 美女一区二区视频| 精品国产凹凸成av人导航| 蜜臀av亚洲一区中文字幕| 日韩欧美高清在线| 国产91在线观看| 久久久精品蜜桃| 91女厕偷拍女厕偷拍高清| 亚洲视频中文字幕| 91精品国产综合久久久蜜臀粉嫩 | 99在线精品视频| 亚洲一卡二卡三卡四卡五卡| 337p亚洲精品色噜噜| 久久精品国产**网站演员| 亚洲国产精品t66y| 精品视频一区二区不卡| 久久国产精品99久久久久久老狼 | 美女尤物国产一区| 国产精品热久久久久夜色精品三区| 色综合天天性综合| 久久国产精品一区二区| 亚洲欧美另类久久久精品2019| 9191精品国产综合久久久久久| 国产一区二区福利| 日韩福利视频网| 亚洲精品水蜜桃| 国产精品免费视频观看| 精品欧美乱码久久久久久1区2区| 91网站最新地址| 国产高清亚洲一区| 久久电影国产免费久久电影| 亚洲黄网站在线观看| 中文字幕视频一区| 久久天天做天天爱综合色| 日韩视频一区二区三区| 337p亚洲精品色噜噜狠狠| 欧美三级中文字幕在线观看| 91蜜桃网址入口| 99久久国产综合色|国产精品| 国产一区福利在线| 国产成人一区二区精品非洲| 国产成人在线色| eeuss影院一区二区三区| 成人av在线资源网站| av激情亚洲男人天堂| 99视频国产精品| 欧亚一区二区三区| 91精品麻豆日日躁夜夜躁| 国产精品亲子伦对白| 中文字幕亚洲成人| 亚洲一区精品在线| 精品一区二区综合| 懂色av一区二区夜夜嗨| 色哟哟精品一区| 日韩欧美成人午夜| 国产精品免费久久| 日韩国产欧美在线播放| 激情六月婷婷久久| 91免费版在线看| 欧美变态tickling挠脚心| 中文字幕一区二区三区乱码在线| 亚洲综合精品久久| 激情综合色丁香一区二区| 91老师片黄在线观看| 日韩欧美国产综合在线一区二区三区| 国产精品美女久久久久久久网站| 成人久久18免费网站麻豆 | 色国产综合视频| 精品国产一区二区三区av性色| 综合在线观看色| 国内不卡的二区三区中文字幕 | 日韩理论片网站| 国产一区二区在线免费观看| 欧美电影一区二区三区| 亚洲一区二区四区蜜桃| 精品一区二区三区欧美| 在线不卡欧美精品一区二区三区| 亚洲精品伦理在线| 色综合天天综合给合国产| 国产精品久久久久久久久快鸭 | 看片的网站亚洲| 日韩免费电影一区| 久久国产剧场电影| 欧美tk丨vk视频| 国产伦精品一区二区三区免费| 717成人午夜免费福利电影| 日韩制服丝袜av| 亚洲精品在线观看视频| 国产成人在线免费观看| 国产精品大尺度| 欧美日韩国产a| 美女任你摸久久 | av一区二区不卡| 亚洲欧美日韩一区二区| 欧美日韩国产在线观看| 日本亚洲天堂网| 亚洲欧洲精品一区二区精品久久久 | 成人性视频免费网站| 国产精品久久久久久久久果冻传媒 | 日韩精品在线一区| 欧美日韩一区视频| 蜜桃视频免费观看一区| 国产婷婷色一区二区三区| 97成人超碰视| 久久99久久久欧美国产| 亚洲精品成人悠悠色影视| 日韩精品一区二区三区视频播放 | 亚洲少妇屁股交4| 欧美色图12p| 99久久综合精品| 国产酒店精品激情| 亚洲女性喷水在线观看一区| 日韩欧美中文一区| 欧美色图激情小说| 91在线视频官网| 粉嫩在线一区二区三区视频| 日本午夜一区二区| 一区二区三区国产精品| 中文字幕va一区二区三区| 久久亚洲免费视频| 欧美第一区第二区| 日韩一区二区免费在线电影| 欧美视频一区二区三区四区| 91色在线porny| 91丨九色porny丨蝌蚪| 9色porny自拍视频一区二区| 成人午夜av影视| 99这里只有精品| 欧美亚洲综合另类| 欧美丰满少妇xxxbbb| 91精品免费在线观看| 精品国产精品网麻豆系列| 欧美一级艳片视频免费观看| 欧美一区二区福利视频| 精品成人私密视频| 久久久久国产精品麻豆| 《视频一区视频二区| 一级特黄大欧美久久久| 男女激情视频一区| 国产精品影视天天线| 色综合天天性综合| 欧美一区二区视频网站| www亚洲一区| 亚洲综合图片区| 精品在线你懂的| 91猫先生在线| 26uuu亚洲| 亚洲国产裸拍裸体视频在线观看乱了 | 亚洲国产一区二区视频| 免费成人美女在线观看.| 成人免费黄色大片| 欧美成人一级视频| 亚洲日本成人在线观看| 九一九一国产精品| 欧美性猛交xxxxxxxx| 国产精品婷婷午夜在线观看|