亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
\begin{equation}  \label{eqn:system}  \left(\mathbf{B} + \mathbf{D}\right) \mathbf{m} = \mathbf6661616\;,\end{equation}where $\mathbf{m}$ is the vector of extrapolated wavefield, and$\mathbf1111161$ is an appropriate righthand side. The helix transformprovides us with the operator $\mathbf{B}^{-1}$, which we can use toprecondition system (\ref{eqn:system}). Introducing the change ofvariables\begin{equation}  \label{eqn:prec}  \mathbf{m} = \mathbf{B}^{-1} \mathbf{x}\;,\end{equation}we can transform the original system (\ref{eqn:system}) to the form\begin{equation}  \label{eqn:system2}  \mathbf6166111 = \left(\mathbf{B} + \mathbf{D}\right) \mathbf{B}^{-1} \mathbf{x} =   \mathbf{x} + \mathbf{D}\,\mathbf{B}^{-1} \mathbf{x}\;.\end{equation}When the velocity perturbation is small\footnote{In the  linear-algebraic sense, this means that the spectral radius of  operator $\mathbf{D}\,\mathbf{B}^{-1}$ is strictly less than one.}, eventhe simple iteration\begin{eqnarray}  \label{ralg}  \mathbf{x}_0 & = & \mathbf6611661\;; \\  \mathbf{x}_k & = & \mathbf6611161 - \mathbf{D}\,\mathbf{B}^{-1} \mathbf{x}_{k+1}\;\end{eqnarray}will converge rapidly to the desired solution. This interestingpossibility needs thorough testing.\parThe third untested possibility (Papanicolaou, personal communication)is to implement a clever patching in the velocity domain, applying aconstant-velocity filter locally inside each patch. Recently developedfast wavelet transform techniques \cite[]{wavelet}, in particular the\emph{local cosine transform}, provide a formal framework for thatapproach.\section{Conclusions}The feasibility of multidimensional deconvolution, proven by thehelix transform, allows us to revisit the problem of implicitwavefield extrapolation in three dimensions. The attraction ofimplicit finite-difference methods lies in their unconditionalstability, a property invaluable for practical applications.\parWe have shown that at least in the constant coefficient case (that is,laterally invariant velocity), it is possible to implement anextremely efficient implicit extrapolation by a recursive inversefiltering in the helix-transformed computational model. Unfortunately,the case of lateral velocity variations still presents a difficultproblem that may not have an exact solution. We are currentlyexploring different roads to that goal.\section{Acknowledgments}We thank Biondo Biondi for useful discussions and for sharing histhree-dimensional expertise.\bibliographystyle{seg}\bibliography{SEP2,SEG,paper}\append{The 1/6-th trick}\inputdir{Math}Given the filter $D_2 (k)$, defined in formula (\ref{eqn:d2k}), we canconstruct an accurate approximation to the second derivative operator$-k^2$ by considering a filter ratio (another Pad\'{e}-typeapproximation) of the form\begin{equation}  \label{eqn:ratio}  -k^2 \approx \frac{D_2(k)}{1 + \beta D_2 (k)}\;,\end{equation}where $\beta$ is an adjustable constant \cite[]{Claerbout.blackwell.85}.The actual Pad\'{e} coefficient is $\beta=1/12$.  As pointed out byFrancis Muir, the value of $\beta = 1/4 - 1/\pi^2 \approx 1/6.726$gives an exact fit at the Nyquist frequency $k = \pi$. Fitting thederivative operator in the $L_1$ norm yields the value of $\beta\approx 1/8.13$. All these approximations are shown in Figure\ref{fig:sixth}.\sideplot{sixth}{width=2.5in}{The second-derivative operator in the  wavenumber domain and its approximations.}\append{Constructing an ``isotropic'' Laplacian operator}\inputdir{Math}The problem of approximating the Laplacian operator in two dimensionsnot only inherits the inaccuracies of the one-dimensionalfinite-difference approximations, but also raises the issue ofazimuthal asymmetry. For example, the usual five-point filter\begin{equation}\label{eqn:usual}F_5 =\begin{array}{|r|r|r|}\hline0 & 1 & 0 \\ \hline1 & -4 & 1 \\ \hline0 & 1 & 0  \\ \hline \end{array}\end{equation}exhibits a clear difference between the grid directions and thedirections at a 45-degree angle to the grid. To overcome thisunpleasant anisotropy, we can consider a slightly larger filter of theform\begin{equation}\label{eqn:new}F_9 = \begin{array}{|r|r|r|}\hline\alpha & \gamma & \alpha \\ \hline\gamma & -4 (\alpha+\gamma) & \gamma \\ \hline\alpha & \gamma & \alpha  \\ \hline \end{array}\end{equation}where the constants $\alpha$ and $\gamma$ are to be defined. TheFourier-domain representation of filter (\ref{eqn:new}) is\begin{equation}  \label{eqn:l9k}  F_9 (k_x,k_y) = 4\,\alpha\,[\cos{k_x}\,\cos{k_y} - 1] +  2\,\gamma\,[\cos{k_x}+\cos{k_y}-2]\;,\end{equation}and the isotropic filter that we can try to approximate is definedanalogously to its one-dimensional equivalent, as follows:\begin{equation}  \label{eqn:lk}  F (k_x,k_y) = 2 (\cos{k} -1) = 2 (\cos{\sqrt{k_x^2+k_y^2}} - 1)\;.\end{equation}Comparing equations (\ref{eqn:l9k}) and (\ref{eqn:lk}), we notice thatthey match exactly, when either of the wavenumbers $k_x$ or $k_y$ isequal to zero, provided that \begin{equation}  \label{eqn:alpha}  \alpha = \frac{1-\gamma}{2}\;.\end{equation}Therefore, we can reduce the problem to estimating a singlecoefficient $\gamma$. Another way of expressing this conclusion is torepresent filter $F_9$ in equation (\ref{eqn:l9k}) as a linearcombination of filter $F_5$ from equation (\ref{eqn:l9k}) and itsrotated version \cite[]{cole}, as follows:\begin{equation}\label{eqn:new2}F_9 = \gamma\, \begin{array}{|r|r|r|}\hline0 & 1 & 0 \\ \hline1 & -4  & 1 \\ \hline0 & 1 & 0  \\ \hline \end{array}+ (1-\gamma)\,\begin{array}{|r|r|r|}\hline1/2 & 0 & 1/2 \\ \hline0 & -2  & 0 \\ \hline1/2 & 0 & 1/2  \\ \hline \end{array}\end{equation}With the value of $\gamma=0.5$, filter $F_9$ takes the value\begin{equation}\label{eqn:mc}F_9 = \begin{array}{|r|r|r|}\hline1/4 & 1/2 & 1/4 \\ \hline1/2 & -3 & 1/2 \\ \hline1/4 & 1/2 & 1/4  \\ \hline \end{array}\end{equation}and corresponds precisely to the nine-point McClellan filter\cite[]{mc,GEO56-11-17781785}. On the other hand, the value of$\gamma=2/3$ gives the least error in the vicinity of the zerowavenumber $k$. In this case, the filter is\begin{equation}\label{eqn:my}F_9 = \begin{array}{|r|r|r|}\hline1/6 & 2/3 & 1/6 \\ \hline2/3 & -10/3 & 2/3 \\ \hline1/6 & 2/3 & 1/6  \\ \hline \end{array}\end{equation}Errors of different approximations are plotted in Figure\ref{fig:laplace}\footnote{Another way of constructing  circular-symmetric filters is suggested by the rotated McClellan  transform \cite[]{Biondi.sep.77.27}.}\plot{laplace}{width=6in}{The numerical anisotropy error of different  Laplacian approximations. Both the five-point Laplacian (plot a) and  its rotated version (plot b) are accurate along the axes, but  exhibit significant anisotropy in between at large wavenumbers. The  nine-point McClellan filter (plot c) has a reduced error, while the  filter with $\gamma=2/3$ (plot d) has the flattest error around the  origin.}\par\inputdir{laplace}Under the helix transform, a filter of the general form(\ref{eqn:new}) becomes equivalent to a one-dimensional filter withthe $Z$ transform\begin{eqnarray}\label{eqn:f9z}F_9 (Z) & = & \alpha\,Z^{-N_x-1} + \gamma\,Z^{-N_x} + \alpha\,Z^{-N_x+1} + \gamma\,Z^{-1} -4\,(\alpha + \gamma) \nonumber \\ & & + \gamma\,Z + \alpha\,Z^{N_x-1} + \gamma\,Z^{N_x} + \alpha\,Z^{N_x+1}\;,\end{eqnarray}where $N_x$ is the helix period (the number of grid points in the $x$dimension). To find the inverse of a convolution with filter(\ref{eqn:f9z}), we factorize the filter into the causal minimum-phasecomponent and its adjoint:\begin{equation}\label{eqn:factor}F_9 (Z) = P (Z) P (1/Z)\;.\end{equation}To find the coefficients of the filter $P$, any one-dimensionalspectral factorization method can be applied. It is important to pointout that the result of factorization (neglecting the numerical errors)does not depend on $N_x$. Another approach is to define a residualerror vector for the coefficients of Z in equation (\ref{eqn:factor})and minimize it for some particular norm. For example, minimizing the$\mathcal{L}_1$ norm when $F_9$ is the McClellan filter(\ref{eqn:mc}), we discover that the filter $P$, after transformingback to two dimensions, takes the form\begin{equation}\label{eqn:l1long}\begin{array}{|r|r|r|r|r|r|r|r|}\hline     &         &           &        &     -1.6094 & 0.4293 & 0.05157 & 0.017406 \\ \hline0.01428 & 0.033513 & 0.0808 & 0.2543 & 0.3521  & 0.1553 &   &          \\ \hline\end{array}\end{equation}The results of applying a recursive deconvolution with filter(\ref{eqn:l1long}) are shown in Figure \ref{fig:inv-laplace}.  Anessentially similar procedure, only with a different set of filters,works for implicit wavefield extrapolation.  \plot{inv-laplace}{width=4in,height=4in}{Inverting the Laplacian  operator by a helix deconvolution.  The top left plot shows the  input, which contains a single spike and the causal minimum-phase  filter $P$. The top right plot is the result of inverse filtering.  As expected, the filter is deconvolved into a spike, and the spike  turns into a smooth one-sided impulse. After the second run, in the  backward (adjoint) direction, we obtain a numerical solution of  Laplace's equation! In the two bottom plots, the solution is shown  with grayscale and contours.}%\activeplot{name}{width=6in,height=}{}{caption}%\activesideplot{name}{height=1.5in,width=}{}{caption}%%\begin{equation}%\label{eqn:}%\end{equation}%%\ref{fig:}%(\ref{eqn:})

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
激情小说亚洲一区| 欧洲激情一区二区| 韩国精品免费视频| 久久精品99国产精品日本| 日韩国产欧美在线视频| 婷婷久久综合九色综合伊人色| 一区二区三区在线免费视频| 亚洲精品菠萝久久久久久久| 亚洲精品日产精品乱码不卡| 一区二区三区在线播放| 亚洲综合清纯丝袜自拍| 亚洲成人在线免费| 日韩精品一二三四| 麻豆精品一区二区| 国精产品一区一区三区mba视频| 国内精品免费**视频| 国产成人啪免费观看软件| 成人手机电影网| 99这里只有精品| 欧美亚洲免费在线一区| 欧美精品 日韩| 日韩欧美国产三级| 久久久久久久久久美女| 中文字幕在线观看不卡视频| 亚洲综合色噜噜狠狠| 男男gaygay亚洲| 国产老女人精品毛片久久| 成人美女视频在线观看18| 色系网站成人免费| 在线播放亚洲一区| 久久久久久夜精品精品免费| 国产精品久久免费看| 亚洲综合丝袜美腿| 久久99精品国产.久久久久久| 国产盗摄精品一区二区三区在线 | av高清久久久| 欧美性做爰猛烈叫床潮| 日韩欧美在线一区二区三区| 国产亚洲一本大道中文在线| 亚洲欧美日韩国产一区二区三区| 午夜av一区二区| 国产精品一线二线三线精华| 色噜噜狠狠成人中文综合| 91麻豆精品国产91久久久使用方法 | 国产欧美综合在线| 亚洲一线二线三线视频| 久久成人综合网| a4yy欧美一区二区三区| 欧美一区二区三区日韩视频| 中文av一区二区| 日韩国产精品91| 91猫先生在线| 欧美精品一区二区三区高清aⅴ| 国产精品超碰97尤物18| 天天操天天综合网| av成人免费在线| 日韩欧美成人一区| 亚洲精品伦理在线| 国产美女av一区二区三区| 欧美午夜电影网| 欧美经典一区二区三区| 日本欧洲一区二区| 91色porny在线视频| 日韩一区二区三区视频在线观看| 国产精品成人免费在线| 极品少妇xxxx精品少妇| 欧美视频一区二| 国产欧美日韩在线视频| 免费观看久久久4p| 日本乱人伦一区| 国产精品欧美久久久久无广告| 日韩成人精品在线| 色综合久久综合| 亚洲国产精品ⅴa在线观看| 日本成人在线网站| 在线欧美日韩国产| 中文字幕在线观看一区| 国产成人aaa| 日韩精品一区二区三区视频播放| 尤物在线观看一区| av中文一区二区三区| 久久久一区二区三区| 喷水一区二区三区| 欧美精品少妇一区二区三区| 亚洲精品视频自拍| 91尤物视频在线观看| 亚洲国产精品精华液ab| 国产一区二区福利| 精品国产一二三| 久久精品理论片| 91精品国产综合久久香蕉的特点 | 麻豆精品视频在线观看视频| 欧美精品第1页| 亚洲成人手机在线| 91国偷自产一区二区使用方法| 综合电影一区二区三区 | 欧美成人video| 日韩vs国产vs欧美| 欧美丰满高潮xxxx喷水动漫| 亚洲国产日韩一区二区| 在线视频亚洲一区| 亚洲久草在线视频| 色狠狠桃花综合| 夜夜夜精品看看| 欧美亚洲国产怡红院影院| 伊人一区二区三区| 91激情在线视频| 亚洲午夜羞羞片| 欧美精品在线一区二区| 日本不卡在线视频| 欧美一区二区三区性视频| 美女视频黄 久久| 精品久久久久久无| 国产一区福利在线| 欧美激情综合五月色丁香小说| 欧美视频三区在线播放| 成人综合在线视频| 欧美日韩成人在线| 图片区日韩欧美亚洲| 欧美精选一区二区| 亚洲老司机在线| 99精品偷自拍| 日本一区二区三级电影在线观看| 调教+趴+乳夹+国产+精品| 色婷婷狠狠综合| 欧美精品一卡二卡| 久久久激情视频| 午夜精品在线视频一区| www.99精品| 亚洲欧洲精品一区二区三区不卡| 丁香天五香天堂综合| 日韩理论片一区二区| 欧美天堂一区二区三区| 综合av第一页| 中文成人综合网| 99视频精品全部免费在线| 极品美女销魂一区二区三区| 午夜精品一区二区三区免费视频| 日韩激情视频在线观看| 国产精品久久久久久亚洲伦| 中文一区在线播放| 亚洲欧美在线视频观看| 国产精品久久久久久久蜜臀| 亚洲欧洲成人av每日更新| 欧美三级欧美一级| 欧美日韩午夜在线视频| 欧美日韩中文精品| 精品久久人人做人人爰| 51精品久久久久久久蜜臀| 色94色欧美sute亚洲线路一ni| 成人高清免费观看| caoporen国产精品视频| 色老汉一区二区三区| 99精品在线观看视频| 在线观看免费成人| 91精品在线免费| 中文字幕在线观看一区二区| 亚洲人成在线观看一区二区| 精品国产乱码久久久久久久| 精品国产欧美一区二区| 国产亚洲精久久久久久| 日本一区二区免费在线| 久久亚洲一区二区三区明星换脸| 精品久久国产字幕高潮| 国产日韩v精品一区二区| 一区二区三区精密机械公司| 婷婷国产在线综合| 精品一区二区三区影院在线午夜| 成人免费看的视频| 欧美日韩一级大片网址| 肉丝袜脚交视频一区二区| 在线观看av不卡| 美女视频网站黄色亚洲| 婷婷开心久久网| 国产精品久久免费看| 精品久久久久久久人人人人传媒| 91免费国产视频网站| 狠狠色丁香婷婷综合久久片| 亚洲永久精品国产| 中文字幕一区二区三| 久久综合九色综合欧美就去吻| 91黄色免费版| 91啪亚洲精品| 国产成人精品亚洲777人妖| 免费欧美日韩国产三级电影| 一区二区免费看| 亚洲欧洲av一区二区三区久久| 久久综合给合久久狠狠狠97色69| 欧美日韩视频在线第一区| 91色视频在线| 91丨九色丨国产丨porny| 国产成人精品aa毛片| 久久99精品国产麻豆不卡| 蜜臀av一区二区| 午夜视频一区在线观看| 洋洋成人永久网站入口| 亚洲免费大片在线观看| 亚洲欧洲一区二区在线播放| 国产日韩欧美高清在线| 久久视频一区二区|