亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
\title{Seismic reflection data interpolation with differential offsetand shot continuation}\author{Sergey Fomel}\maketitle\begin{abstract}I propose a finite-difference offset continuation filter for  interpolating seismic reflection data. The filter is constructed  from the offset continuation differential equation and is applied on  frequency slices in the log-stretch frequency domain.  Synthetic and  real data tests demonstrate that the proposed method succeeds in  structurally complex situations where more simplistic approaches  fail.\end{abstract}\section{Introduction}Data interpolation is one of the most important problems of seismicdata processing. In 2-D exploration, the interpolation problem arisesbecause of missing near and far offsets, spatial aliasing andoccasional bad traces. In 3-D exploration, the importance of thisproblem increases dramatically because 3-D acquisition almost neverprovides a complete regular coverage in both midpoint and offsetcoordinates \cite[]{Biondi.3dsi.99}. Data regularization in 3-D cansolve the problem of Kirchoff migration artifacts \cite[]{SEG-1994-1553},prepare the data for wave-equation common-azimuth imaging\cite[]{GEO61-06-18221832}, or provide the spatial coverage required for 3-Dmultiple elimination \cite[]{SEG-1998-1321}.\par\cite{Claerbout.blackwell.92,gee} formulates the following generalprinciple of missing data interpolation:\begin{quote}  A method for restoring missing data is to ensure that the restored  data, after specified filtering, has minimum energy.\end{quote}How can one specify an appropriate filtering for a given interpolationproblem? Smooth surfaces are conveniently interpolated with Laplacianfilters \cite[]{GEO39-01-00390048}. Steering filters help usinterpolate data with predefined dip fields \cite[]{SEG-1998-1851}.Prediction-error filters in time-space or frequency-space domainsuccessfully interpolate data composed of distinctive plane waves\cite[]{GEO56-06-07850794,gee}. Local plane waves are handled withplane-wave destruction filters \cite[]{GEO67-06-19461960}.  Becauseprestack seismic data is not stationary in the offset direction,non-stationary prediction-error filters need to be estimated, whichleads to an accurate but relatively expensive method with manyadjustable parameters \cite[]{SEG-1999-11541157}.  \par A simple modelfor reflection seismic data is a set of hyperbolic events on a commonmidpoint gather. The simplest filter for this model is the firstderivative in the offset direction applied after the normal moveoutcorrection. Going one step beyond this simple approximation requirestaking the dip moveout (DMO) effect into account\cite[]{FBR04-07-00070024}. The DMO effect is fully incorporated inthe offset continuation differential equation\cite[]{me,GEO68-02-07180732}.  \par Offset continuation is a processof seismic data transformation between different offsets\cite[]{GPR29-03-03740406,GPR30-06-08130828,GPR30-06-08290849}.Different types of DMO operators \cite[]{DMP00-00-01300130} can beregarded as continuation to zero offset and derived as solutions of aninitial-value problem with the revised offset continuation equation\cite[]{GEO68-02-07180732}. Within a constant-velocity assumption, this equationnot only provides correct traveltimes on the continued sections, butalso correctly transforms the corresponding wave amplitudes\cite[]{SEG-1996-1731}. Integral offset continuation operators havebeen derived independently by \cite{Chemingui.sep.82.117},\cite{GEO61-06-18461858}, and \cite{stovas}.  The 3-D analog is knownas azimuth moveout (AMO) \cite[]{GEO63-02-05740588}. In theshot-record domain, integral offset continuation transforms to shotcontinuation \cite[]{Schwab.sep.77.117,SEG-1993-0673,SEG-1996-0439}.Integral continuation operators can be applied directly for missingdata interpolation and regularization\cite[]{SEG-1994-1549,SEG-1999-19951998}. However, they don't behavewell for continuation at small distances in the offset space becauseof limited integration apertures and, therefore, are not well suitedfor interpolating neighboring records. Additionally, as all integral(Kirchoff-type) operators they suffer from irregularities in the inputgeometry. The latter problem is addressed by accurate but expensiveinversion to common offset \cite[]{Chemingui.sepphd.101}.  \par Inthis paper, I propose an application of offset continuation in theform of a finite-difference filter for Claerbout's method of missingdata interpolation.  The filter is designed in the log-stretchfrequency domain, where each frequency slice can be interpolatedindependently.  Small filter size and easy parallelization amongdifferent frequencies assure a high efficiency of the proposedapproach. Although the offset continuation filter lacks the predictivepower of non-stationary prediction-error filters, it is much simplerto handle and serves as a good \emph{a priori} guess of aninterpolative filter for seismic reflection data. I first test theproposed method by interpolating randomly missing traces in aconstant-velocity synthetic dataset. Next, I apply offset continuationand related shot continuation field to a real data example from theNorth Sea. Using a pair of offset continuation filters, operating intwo orthogonal directions, I successfully regularize a 3-D marinedataset. These tests demonstrate that the offset continuation canperform well in complex structural situations where more simplisticapproaches fail.\section{Offset continuation}A particularly efficient implementation of offset continuation resultsfrom a log-stretch transform of the time coordinate\cite[]{GPR30-06-08130828}, followed by a Fourier transform of thestretched time axis. After these transforms, the offset continuationequation from \cite[]{GEO68-02-07180732} takes the form\begin{equation}  h \, \left( {\partial^2 \tilde{P} \over \partial y^2} -     {\partial^2 \tilde{P} \over \partial h^2} \right) -   i\,\Omega \, {\partial \tilde{P} \over   {\partial h}} = 0 \;,  \label{eqn:OC} \end{equation}where $\Omega$ is the corresponding frequency, $h$ is the half-offset,$y$ is the midpoint, and $\tilde{P} (y,h,\Omega)$ is the transformeddata. As in other $F$-$X$ methods, equation~(\ref{eqn:OC}) can beapplied independently and in parallel on different frequency slices.\parWe can construct an effective offset-continuation finite-differencefilter by studying first the problem of wave extrapolation betweenneighboring offsets. In the frequency-wavenumber domain, theextrapolation operator is defined by solving the initial-value problemon equation~(\ref{eqn:OC}). The solution takes the following form\cite[]{GEO68-02-07180732}:\begin{equation}\widehat{\widehat{P}}(h_2) = \widehat{\widehat{P}}(h_1)\,Z_{\lambda}(kh_2)/Z_{\lambda}(kh_1)\;,\label{eqn:OKOC}\end{equation}where $\lambda = (1 + i \Omega)/2$, and $Z_\lambda$ is the specialfunction defined as\begin{eqnarray}\nonumberZ_{\lambda}(x) & = & \Gamma(1-\lambda)\,\left(x \over 2\right)^{\lambda}\,J_{-\lambda}(x)={}_0F_1\left(;1-\lambda;-\frac{x^2}{4}\right) \\& = &\sum_{n=0}^{\infty} {(-1)^n \over n!}\,{\Gamma(1-\lambda) \over \Gamma(n+1-\lambda)}\,\left(x \over 2\right)^{2n}\;,\label{eqn:z}\end{eqnarray}where $\Gamma$ is the gamma function, $J_{-\lambda}$ is the Besselfunction, and ${}_0F_1$ is the confluent hypergeometric limit function\cite[]{ab}. The wavenumber $k$ in equation~(\ref{eqn:OKOC}) correspondsto the midpoint $y$ in the original data domain.  In thehigh-frequency asymptotics, operator~(\ref{eqn:OKOC}) takes the form\begin{equation}\widehat{\widehat{P}}(h_2) = \widehat{\widehat{P}}(h_1)\,F(2 k h_2/\Omega)/F(2 k h_1/\Omega)\,\exp{\left[i\Omega\,\psi\left(2 k h_2/\Omega - 2 k h_1/\Omega\right)\right]}\;,\label{eqn:AOKOC}\end{equation}where\begin{equation}F(\epsilon)=\sqrt{{1+\sqrt{1+\epsilon^2}} \over{2\,\sqrt{1+\epsilon^2}}}\,\exp\left({1-\sqrt{1+\epsilon^2}} \over 2\right)\;,\label{eqn:F}\end{equation}and\begin{equation}\psi(\epsilon)={1 \over 2}\,\left(1 - \sqrt{1+\epsilon^2} +\ln\left({1 + \sqrt{1+\epsilon^2}} \over 2\right)\right)\;.\label{eqn:psi}\end{equation}Returning to the original domain, we can approximate the continuationoperator with a finite-difference filter with the $Z$-transform\begin{equation}\label{eqn:OCpass}\hat{P}_{h+1}(Z_y) = \hat{P}_{h} (Z_y) \frac{G_1(Z_y)}{G_2(Z_y)}\;.\end{equation}The coefficients of the filters $G_1(Z_y)$ and $G_2(Z_y)$ are found byfitting the Taylor series coefficients of the filter response aroundthe zero wavenumber.  In the simplest case of 3-pointfilters\footnote{An analogous technique applied to the case of  wavefield depth extrapolation with the wave equation would lead to  the famous 45-degree implicit finite-difference operator  \cite[]{Claerbout.blackwell.85}.}, this procedure uses four Taylorseries coefficients and leads to the following expressions:\begin{eqnarray}  \label{eqn:OCnum}  G_1(Z_y) & = & 1 - \frac{1 - c_1(\Omega) h_2^2 + c_2(\Omega) h_1^2}{6} +  \frac{1 - c_1(\Omega) h_2^2 + c_2(\Omega) h_1^2}{12}\,  \left(Z_y + Z_y^{-1}\right)\;, \\  \label{eqn:OCden}  G_2(Z_y) & = & 1 - \frac{1 - c_1(\Omega) h_1^2 + c_2(\Omega) h_2^2}{6} +  \frac{1 - c_1(\Omega) h_1^2 + c_2(\Omega) h_2^2}{12}\,  \left(Z_y + Z_y^{-1}\right)\;,\end{eqnarray}where \[c_1(\Omega) = \frac{3\,(\Omega^2 + 9 - 4  i\,\Omega)}{\Omega^2\,(3+i\,\Omega)}\]and \[c_2(\Omega) =\frac{3\,(\Omega^2 - 27 - 8 i\,\Omega)}{\Omega^2\,(3+i\,\Omega)}\;.\]Figure~\ref{fig:arg} compares the phase characteristic of thefinite-difference extrapolators~(\ref{eqn:OCpass}) with the phasecharacteristics of the exact operator~(\ref{eqn:OKOC}) and theasymptotic operator~(\ref{eqn:AOKOC}). The match between differentphases is poor for very low frequencies (left plot inFigure~\ref{fig:arg}) but sufficiently accurate for frequencies in thetypical bandwidth of seismic data (right plot inFigure~\ref{fig:arg}).Figure~\ref{fig:off-imp} compares impulse responses of the inverse DMOoperator constructed by the asymptotic $\Omega-k$ operator with thoseconstructed by finite-difference offset continuation. Neglectingsubtle phase inaccuracies at large dips, the two images look similar,which provides an experimental evidence of the accuracy of theproposed finite-difference scheme.When applied on the offset-midpoint plane of an individual frequencyslice, the one-dimensional implicit filter~(\ref{eqn:OCpass})transforms to a two-dimensional explicit filter with the2-D $Z$-transform \begin{equation}\label{eqn:gfilt}G(Z_y,Z_h) = G_1(Z_y) - Z_h G_2(Z_y)\;.\end{equation}Convolution with filter~(\ref{eqn:gfilt}) is the regularizationoperator that I propose to use for interpolating prestack seismic data.%I propose to adopt a finite-difference form of the differential%operator~(\ref{eqn:OC}) for the regularization operator $\mathbf{D}$. A%simple analysis of equation~(\ref{eqn:OC}) shows that at small%frequencies, the operator is dominated by the first term. The form%${\partial^2 P \over \partial y^2} - {\partial^2 P \over \partial%  h^2}$ is equivalent to the second mixed derivative in the source and%receiver coordinates. Therefore, at low frequencies, the offset waves%propagate in the source and receiver directions. At high frequencies,%the second term in~(\ref{eqn:OC}) becomes dominating, and the entire%method becomes equivalent to the trivial linear interpolation in%offset. The interpolation pattern is more complicated at intermediate%frequencies.  \inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品欧美久久久| 国产成人免费在线| 日本一区二区三区免费乱视频 | 91亚洲精品一区二区乱码| 麻豆国产91在线播放| 日一区二区三区| 同产精品九九九| 五月婷婷综合网| 亚洲va欧美va人人爽| 五月天一区二区三区| 亚洲国产日韩a在线播放性色| 成人欧美一区二区三区白人| 久草在线在线精品观看| 欧美成人a∨高清免费观看| 欧美性视频一区二区三区| 色婷婷狠狠综合| 日本韩国视频一区二区| 欧洲人成人精品| 欧美日韩国产高清一区二区| 欧美精品丝袜中出| 欧美成人综合网站| 国产欧美一区二区三区鸳鸯浴| 久久久精品中文字幕麻豆发布| 国产日韩欧美制服另类| 国产精品麻豆视频| 亚洲国产成人精品视频| 同产精品九九九| 国内精品伊人久久久久影院对白| 国产一区二区h| 91网上在线视频| 欧美无人高清视频在线观看| 高清成人在线观看| 国产成人精品一区二| 成人国产在线观看| 91成人在线免费观看| 欧美一区二区日韩一区二区| 亚洲精品一区二区三区四区高清| 欧美韩国日本一区| 亚洲国产另类精品专区| 久久成人麻豆午夜电影| 成人免费高清在线| 欧美性大战xxxxx久久久| 日韩免费福利电影在线观看| 国产精品大尺度| 日本欧美大码aⅴ在线播放| 日韩高清中文字幕一区| 成人av电影在线网| 欧美一区二区三区男人的天堂| 久久精品在这里| 亚洲一区二区欧美激情| 国产精品一区免费视频| 久久99国产精品免费| 成人涩涩免费视频| 8x8x8国产精品| 中文字幕一区二区三区蜜月| 免费成人美女在线观看| 99re这里只有精品视频首页| 日韩欧美一二三| 亚洲国产成人porn| 99热精品国产| 国产亚洲欧美色| 久久国产成人午夜av影院| 欧美色图激情小说| 日韩伦理av电影| 粉嫩高潮美女一区二区三区 | 精品电影一区二区| 五月激情六月综合| 一本一道综合狠狠老| 中文字幕不卡在线| 国产激情视频一区二区在线观看| 这里只有精品免费| 亚洲1区2区3区视频| 91小视频免费观看| 国产精品久久99| 成人性生交大片免费| 久久综合丝袜日本网| 麻豆成人综合网| 日韩一区二区三区在线观看| 亚洲成人av一区二区三区| 91成人国产精品| 国产一区二区三区日韩| 欧美一区二区成人6969| 亚洲va国产天堂va久久en| 欧美亚洲图片小说| 亚洲高清视频在线| 欧美日韩国产123区| 午夜精品久久一牛影视| 欧美日韩你懂得| 亚洲地区一二三色| 91精品国产综合久久精品app| 日韩精品乱码av一区二区| 欧美日韩一区视频| 日韩电影在线一区| 欧美xxxx在线观看| 国产精品1区2区| 国产精品视频观看| 91福利在线导航| 日韩高清不卡一区| 精品国产髙清在线看国产毛片| 韩国精品在线观看| 亚洲国产精品激情在线观看| 9久草视频在线视频精品| 亚洲六月丁香色婷婷综合久久 | 国产成人免费视频网站| 国产亚洲综合av| 91最新地址在线播放| 午夜在线电影亚洲一区| 精品国产免费人成在线观看| 国产成人亚洲精品青草天美| 亚洲欧美一区二区久久| 欧美三级韩国三级日本三斤| 久久成人免费日本黄色| 最近日韩中文字幕| 91精品国产欧美日韩| 国产精品一区二区x88av| 亚洲人成精品久久久久久| 欧美电影一区二区| 国产精品白丝av| 亚洲一区二区成人在线观看| 欧美va亚洲va| 97精品久久久午夜一区二区三区| 午夜精品福利一区二区蜜股av | 久久99国产精品久久99| 亚洲六月丁香色婷婷综合久久| 日韩一区二区在线免费观看| 94-欧美-setu| 国产在线一区二区综合免费视频| 综合婷婷亚洲小说| 精品久久人人做人人爱| 在线观看中文字幕不卡| 国产精品影音先锋| 日本免费新一区视频| 亚洲欧洲韩国日本视频| 亚洲精品一区二区精华| 欧美日韩免费高清一区色橹橹 | 成人一区二区三区视频| 日韩国产在线观看一区| 中文字幕中文字幕中文字幕亚洲无线| 欧美精品电影在线播放| 99久久精品免费| 国产综合久久久久久鬼色| 天天操天天色综合| 亚洲愉拍自拍另类高清精品| 欧美国产丝袜视频| 亚洲精品在线一区二区| 精品日韩一区二区三区| 欧美精品在线视频| 欧美亚洲一区二区在线| 一本大道综合伊人精品热热| 国产成人免费在线观看不卡| 极品瑜伽女神91| 美女免费视频一区二区| 爽爽淫人综合网网站| 亚洲一区av在线| 亚洲综合自拍偷拍| 亚洲色图19p| 亚洲欧美日韩久久精品| 最新久久zyz资源站| 亚洲欧洲精品一区二区三区| 国产精品无圣光一区二区| 国产女人aaa级久久久级| 久久蜜臀中文字幕| 中文字幕国产精品一区二区| 久久久久国产精品人| 国产日韩欧美综合一区| 久久网站热最新地址| 国产欧美视频一区二区三区| 91麻豆精品国产| 亚洲精品视频在线看| 中文av一区二区| 亚洲国产精品99久久久久久久久| 久久午夜羞羞影院免费观看| 久久久夜色精品亚洲| 国产精品午夜春色av| 亚洲丝袜美腿综合| 亚洲国产成人porn| 久久精品久久综合| 国产成人av电影在线观看| 成人免费高清在线| 欧美亚日韩国产aⅴ精品中极品| 欧美在线观看视频在线| 3d动漫精品啪啪一区二区竹菊| 日韩欧美电影一区| 欧美激情在线一区二区三区| 亚洲人妖av一区二区| 亚洲成人tv网| 黄色日韩网站视频| 97aⅴ精品视频一二三区| 欧美夫妻性生活| 久久婷婷国产综合精品青草| 亚洲图片另类小说| 免费在线视频一区| 成人一区二区在线观看| 在线观看不卡视频| 精品福利av导航| 亚洲五码中文字幕| 国产九九视频一区二区三区| 3atv在线一区二区三区| 国产精品嫩草影院av蜜臀| 亚洲va国产va欧美va观看|