亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號:
\title{Seismic reflection data interpolation with differential offsetand shot continuation}\author{Sergey Fomel}\maketitle\begin{abstract}I propose a finite-difference offset continuation filter for  interpolating seismic reflection data. The filter is constructed  from the offset continuation differential equation and is applied on  frequency slices in the log-stretch frequency domain.  Synthetic and  real data tests demonstrate that the proposed method succeeds in  structurally complex situations where more simplistic approaches  fail.\end{abstract}\section{Introduction}Data interpolation is one of the most important problems of seismicdata processing. In 2-D exploration, the interpolation problem arisesbecause of missing near and far offsets, spatial aliasing andoccasional bad traces. In 3-D exploration, the importance of thisproblem increases dramatically because 3-D acquisition almost neverprovides a complete regular coverage in both midpoint and offsetcoordinates \cite[]{Biondi.3dsi.99}. Data regularization in 3-D cansolve the problem of Kirchoff migration artifacts \cite[]{SEG-1994-1553},prepare the data for wave-equation common-azimuth imaging\cite[]{GEO61-06-18221832}, or provide the spatial coverage required for 3-Dmultiple elimination \cite[]{SEG-1998-1321}.\par\cite{Claerbout.blackwell.92,gee} formulates the following generalprinciple of missing data interpolation:\begin{quote}  A method for restoring missing data is to ensure that the restored  data, after specified filtering, has minimum energy.\end{quote}How can one specify an appropriate filtering for a given interpolationproblem? Smooth surfaces are conveniently interpolated with Laplacianfilters \cite[]{GEO39-01-00390048}. Steering filters help usinterpolate data with predefined dip fields \cite[]{SEG-1998-1851}.Prediction-error filters in time-space or frequency-space domainsuccessfully interpolate data composed of distinctive plane waves\cite[]{GEO56-06-07850794,gee}. Local plane waves are handled withplane-wave destruction filters \cite[]{GEO67-06-19461960}.  Becauseprestack seismic data is not stationary in the offset direction,non-stationary prediction-error filters need to be estimated, whichleads to an accurate but relatively expensive method with manyadjustable parameters \cite[]{SEG-1999-11541157}.  \par A simple modelfor reflection seismic data is a set of hyperbolic events on a commonmidpoint gather. The simplest filter for this model is the firstderivative in the offset direction applied after the normal moveoutcorrection. Going one step beyond this simple approximation requirestaking the dip moveout (DMO) effect into account\cite[]{FBR04-07-00070024}. The DMO effect is fully incorporated inthe offset continuation differential equation\cite[]{me,GEO68-02-07180732}.  \par Offset continuation is a processof seismic data transformation between different offsets\cite[]{GPR29-03-03740406,GPR30-06-08130828,GPR30-06-08290849}.Different types of DMO operators \cite[]{DMP00-00-01300130} can beregarded as continuation to zero offset and derived as solutions of aninitial-value problem with the revised offset continuation equation\cite[]{GEO68-02-07180732}. Within a constant-velocity assumption, this equationnot only provides correct traveltimes on the continued sections, butalso correctly transforms the corresponding wave amplitudes\cite[]{SEG-1996-1731}. Integral offset continuation operators havebeen derived independently by \cite{Chemingui.sep.82.117},\cite{GEO61-06-18461858}, and \cite{stovas}.  The 3-D analog is knownas azimuth moveout (AMO) \cite[]{GEO63-02-05740588}. In theshot-record domain, integral offset continuation transforms to shotcontinuation \cite[]{Schwab.sep.77.117,SEG-1993-0673,SEG-1996-0439}.Integral continuation operators can be applied directly for missingdata interpolation and regularization\cite[]{SEG-1994-1549,SEG-1999-19951998}. However, they don't behavewell for continuation at small distances in the offset space becauseof limited integration apertures and, therefore, are not well suitedfor interpolating neighboring records. Additionally, as all integral(Kirchoff-type) operators they suffer from irregularities in the inputgeometry. The latter problem is addressed by accurate but expensiveinversion to common offset \cite[]{Chemingui.sepphd.101}.  \par Inthis paper, I propose an application of offset continuation in theform of a finite-difference filter for Claerbout's method of missingdata interpolation.  The filter is designed in the log-stretchfrequency domain, where each frequency slice can be interpolatedindependently.  Small filter size and easy parallelization amongdifferent frequencies assure a high efficiency of the proposedapproach. Although the offset continuation filter lacks the predictivepower of non-stationary prediction-error filters, it is much simplerto handle and serves as a good \emph{a priori} guess of aninterpolative filter for seismic reflection data. I first test theproposed method by interpolating randomly missing traces in aconstant-velocity synthetic dataset. Next, I apply offset continuationand related shot continuation field to a real data example from theNorth Sea. Using a pair of offset continuation filters, operating intwo orthogonal directions, I successfully regularize a 3-D marinedataset. These tests demonstrate that the offset continuation canperform well in complex structural situations where more simplisticapproaches fail.\section{Offset continuation}A particularly efficient implementation of offset continuation resultsfrom a log-stretch transform of the time coordinate\cite[]{GPR30-06-08130828}, followed by a Fourier transform of thestretched time axis. After these transforms, the offset continuationequation from \cite[]{GEO68-02-07180732} takes the form\begin{equation}  h \, \left( {\partial^2 \tilde{P} \over \partial y^2} -     {\partial^2 \tilde{P} \over \partial h^2} \right) -   i\,\Omega \, {\partial \tilde{P} \over   {\partial h}} = 0 \;,  \label{eqn:OC} \end{equation}where $\Omega$ is the corresponding frequency, $h$ is the half-offset,$y$ is the midpoint, and $\tilde{P} (y,h,\Omega)$ is the transformeddata. As in other $F$-$X$ methods, equation~(\ref{eqn:OC}) can beapplied independently and in parallel on different frequency slices.\parWe can construct an effective offset-continuation finite-differencefilter by studying first the problem of wave extrapolation betweenneighboring offsets. In the frequency-wavenumber domain, theextrapolation operator is defined by solving the initial-value problemon equation~(\ref{eqn:OC}). The solution takes the following form\cite[]{GEO68-02-07180732}:\begin{equation}\widehat{\widehat{P}}(h_2) = \widehat{\widehat{P}}(h_1)\,Z_{\lambda}(kh_2)/Z_{\lambda}(kh_1)\;,\label{eqn:OKOC}\end{equation}where $\lambda = (1 + i \Omega)/2$, and $Z_\lambda$ is the specialfunction defined as\begin{eqnarray}\nonumberZ_{\lambda}(x) & = & \Gamma(1-\lambda)\,\left(x \over 2\right)^{\lambda}\,J_{-\lambda}(x)={}_0F_1\left(;1-\lambda;-\frac{x^2}{4}\right) \\& = &\sum_{n=0}^{\infty} {(-1)^n \over n!}\,{\Gamma(1-\lambda) \over \Gamma(n+1-\lambda)}\,\left(x \over 2\right)^{2n}\;,\label{eqn:z}\end{eqnarray}where $\Gamma$ is the gamma function, $J_{-\lambda}$ is the Besselfunction, and ${}_0F_1$ is the confluent hypergeometric limit function\cite[]{ab}. The wavenumber $k$ in equation~(\ref{eqn:OKOC}) correspondsto the midpoint $y$ in the original data domain.  In thehigh-frequency asymptotics, operator~(\ref{eqn:OKOC}) takes the form\begin{equation}\widehat{\widehat{P}}(h_2) = \widehat{\widehat{P}}(h_1)\,F(2 k h_2/\Omega)/F(2 k h_1/\Omega)\,\exp{\left[i\Omega\,\psi\left(2 k h_2/\Omega - 2 k h_1/\Omega\right)\right]}\;,\label{eqn:AOKOC}\end{equation}where\begin{equation}F(\epsilon)=\sqrt{{1+\sqrt{1+\epsilon^2}} \over{2\,\sqrt{1+\epsilon^2}}}\,\exp\left({1-\sqrt{1+\epsilon^2}} \over 2\right)\;,\label{eqn:F}\end{equation}and\begin{equation}\psi(\epsilon)={1 \over 2}\,\left(1 - \sqrt{1+\epsilon^2} +\ln\left({1 + \sqrt{1+\epsilon^2}} \over 2\right)\right)\;.\label{eqn:psi}\end{equation}Returning to the original domain, we can approximate the continuationoperator with a finite-difference filter with the $Z$-transform\begin{equation}\label{eqn:OCpass}\hat{P}_{h+1}(Z_y) = \hat{P}_{h} (Z_y) \frac{G_1(Z_y)}{G_2(Z_y)}\;.\end{equation}The coefficients of the filters $G_1(Z_y)$ and $G_2(Z_y)$ are found byfitting the Taylor series coefficients of the filter response aroundthe zero wavenumber.  In the simplest case of 3-pointfilters\footnote{An analogous technique applied to the case of  wavefield depth extrapolation with the wave equation would lead to  the famous 45-degree implicit finite-difference operator  \cite[]{Claerbout.blackwell.85}.}, this procedure uses four Taylorseries coefficients and leads to the following expressions:\begin{eqnarray}  \label{eqn:OCnum}  G_1(Z_y) & = & 1 - \frac{1 - c_1(\Omega) h_2^2 + c_2(\Omega) h_1^2}{6} +  \frac{1 - c_1(\Omega) h_2^2 + c_2(\Omega) h_1^2}{12}\,  \left(Z_y + Z_y^{-1}\right)\;, \\  \label{eqn:OCden}  G_2(Z_y) & = & 1 - \frac{1 - c_1(\Omega) h_1^2 + c_2(\Omega) h_2^2}{6} +  \frac{1 - c_1(\Omega) h_1^2 + c_2(\Omega) h_2^2}{12}\,  \left(Z_y + Z_y^{-1}\right)\;,\end{eqnarray}where \[c_1(\Omega) = \frac{3\,(\Omega^2 + 9 - 4  i\,\Omega)}{\Omega^2\,(3+i\,\Omega)}\]and \[c_2(\Omega) =\frac{3\,(\Omega^2 - 27 - 8 i\,\Omega)}{\Omega^2\,(3+i\,\Omega)}\;.\]Figure~\ref{fig:arg} compares the phase characteristic of thefinite-difference extrapolators~(\ref{eqn:OCpass}) with the phasecharacteristics of the exact operator~(\ref{eqn:OKOC}) and theasymptotic operator~(\ref{eqn:AOKOC}). The match between differentphases is poor for very low frequencies (left plot inFigure~\ref{fig:arg}) but sufficiently accurate for frequencies in thetypical bandwidth of seismic data (right plot inFigure~\ref{fig:arg}).Figure~\ref{fig:off-imp} compares impulse responses of the inverse DMOoperator constructed by the asymptotic $\Omega-k$ operator with thoseconstructed by finite-difference offset continuation. Neglectingsubtle phase inaccuracies at large dips, the two images look similar,which provides an experimental evidence of the accuracy of theproposed finite-difference scheme.When applied on the offset-midpoint plane of an individual frequencyslice, the one-dimensional implicit filter~(\ref{eqn:OCpass})transforms to a two-dimensional explicit filter with the2-D $Z$-transform \begin{equation}\label{eqn:gfilt}G(Z_y,Z_h) = G_1(Z_y) - Z_h G_2(Z_y)\;.\end{equation}Convolution with filter~(\ref{eqn:gfilt}) is the regularizationoperator that I propose to use for interpolating prestack seismic data.%I propose to adopt a finite-difference form of the differential%operator~(\ref{eqn:OC}) for the regularization operator $\mathbf{D}$. A%simple analysis of equation~(\ref{eqn:OC}) shows that at small%frequencies, the operator is dominated by the first term. The form%${\partial^2 P \over \partial y^2} - {\partial^2 P \over \partial%  h^2}$ is equivalent to the second mixed derivative in the source and%receiver coordinates. Therefore, at low frequencies, the offset waves%propagate in the source and receiver directions. At high frequencies,%the second term in~(\ref{eqn:OC}) becomes dominating, and the entire%method becomes equivalent to the trivial linear interpolation in%offset. The interpolation pattern is more complicated at intermediate%frequencies.  \inputdir{Math}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美色男人天堂| 国产精品久久久久久久久晋中| 日韩免费视频一区二区| 中文字幕二三区不卡| 性欧美疯狂xxxxbbbb| 成人avav在线| 欧美成人艳星乳罩| 亚洲成国产人片在线观看| jiyouzz国产精品久久| 日韩免费福利电影在线观看| 亚洲欧美日韩小说| 国产一区中文字幕| 欧美高清激情brazzers| 1区2区3区欧美| 成人看片黄a免费看在线| 欧美电视剧在线看免费| 午夜精品一区二区三区三上悠亚| 国产成a人无v码亚洲福利| 欧美一二三区在线| 日韩高清欧美激情| 欧美日韩精品一区二区三区 | 一本色道亚洲精品aⅴ| 久久久久久一二三区| 男男视频亚洲欧美| 欧美日韩一区中文字幕| 亚洲精品国产a久久久久久| 99热精品国产| 日韩一区欧美一区| 91视频.com| 亚洲视频图片小说| 91蝌蚪porny九色| 亚洲视频在线观看一区| 99久久免费视频.com| 国产精品毛片久久久久久| 国产99一区视频免费| 中文字幕不卡的av| 91在线视频免费91| 亚洲女厕所小便bbb| 色综合天天综合网天天狠天天| 亚洲欧美日本韩国| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 亚洲欧美日韩国产综合在线| 色婷婷av一区二区三区软件| 亚洲午夜影视影院在线观看| 欧美色图12p| 美女精品一区二区| 国产亚洲欧美日韩日本| 成人网页在线观看| 亚洲欧美日韩国产另类专区| 欧美亚洲尤物久久| 奇米777欧美一区二区| 精品av综合导航| 成人精品高清在线| 亚洲一区二区精品久久av| 欧美一区二区三区人| 国产乱子伦一区二区三区国色天香| 精品乱人伦小说| 成人国产精品视频| 夜夜夜精品看看| 日韩精品在线看片z| 国产东北露脸精品视频| 亚洲免费视频成人| 3d成人动漫网站| 国产老肥熟一区二区三区| 亚洲男人电影天堂| 日韩视频一区在线观看| 国产91丝袜在线播放九色| 亚洲一区在线视频| 久久综合九色综合久久久精品综合 | 97久久超碰国产精品电影| 亚洲一区二区视频在线| 日韩一区二区在线看片| 岛国一区二区三区| 日韩成人av影视| 中文字幕中文在线不卡住| 欧美日韩一级黄| 丁香一区二区三区| 偷拍与自拍一区| 中文字幕日韩一区二区| 欧美一二三区在线观看| 色悠悠亚洲一区二区| 国产一区日韩二区欧美三区| 亚洲第一成年网| 国产精品你懂的在线欣赏| 欧美一级精品在线| 99久久99久久免费精品蜜臀| 九色综合狠狠综合久久| 一区二区三区蜜桃| 国产精品久久久久久久久久免费看| 日韩精品中午字幕| 欧美肥大bbwbbw高潮| 91免费视频观看| 粉嫩高潮美女一区二区三区| 美女高潮久久久| 亚洲成精国产精品女| 亚洲欧美一区二区三区久本道91| 久久亚洲欧美国产精品乐播| 777精品伊人久久久久大香线蕉| 99精品视频在线观看| 国产经典欧美精品| 精品制服美女久久| 美女看a上一区| 免费成人美女在线观看.| 亚洲高清免费视频| 亚洲电影中文字幕在线观看| 亚洲欧美韩国综合色| 国产精品乱人伦一区二区| 久久精品人人做人人爽97| 91精品国产色综合久久| 欧美精品在线观看播放| 欧美视频一区二区三区在线观看| 91尤物视频在线观看| 丰满少妇久久久久久久| 懂色av一区二区夜夜嗨| 国产白丝精品91爽爽久久| 国产一区二区伦理片| 韩国av一区二区三区| 久久精品国产99| 久久爱另类一区二区小说| 蜜乳av一区二区三区| 日韩av网站免费在线| 免费成人美女在线观看.| 蜜芽一区二区三区| 紧缚奴在线一区二区三区| 国产精品自在欧美一区| 成人深夜视频在线观看| 91亚洲资源网| 在线观看av不卡| 欧美肥妇毛茸茸| 精品国产伦一区二区三区免费 | 精品一区二区三区免费毛片爱| 麻豆精品久久精品色综合| 国内精品久久久久影院色| 盗摄精品av一区二区三区| 91麻豆高清视频| 欧美日韩激情一区二区三区| 精品女同一区二区| 亚洲国产高清在线观看视频| 亚洲精品午夜久久久| 日韩精品电影一区亚洲| 精品无人码麻豆乱码1区2区| 成人精品亚洲人成在线| 欧美亚洲尤物久久| 欧美精品一区二区三| 国产精品久久影院| 三级欧美在线一区| 国产精品影音先锋| 91国偷自产一区二区使用方法| 欧美一区二区精品久久911| 久久精品视频免费| 亚洲国产美国国产综合一区二区| 美女网站色91| 99久久精品国产一区| 欧美日本在线看| 欧美激情一区三区| 亚洲成精国产精品女| 岛国精品在线播放| 91麻豆精品国产| 国产亚洲人成网站| 日日骚欧美日韩| www.色综合.com| 欧美一区国产二区| 亚洲欧美日韩一区二区三区在线观看| 美国十次了思思久久精品导航| 成人激情小说网站| 日韩一二三四区| 亚洲综合色噜噜狠狠| 国产成人免费视频网站 | 五月开心婷婷久久| 成人涩涩免费视频| 精品国产一区二区三区av性色| 一区二区三区国产| 国产精品88888| 在线不卡的av| 一区二区三区日韩精品视频| 国产精品亚洲一区二区三区妖精| 欧美性色综合网| 亚洲乱码中文字幕综合| 国产91精品免费| 久久综合九色综合欧美98| 日韩中文字幕亚洲一区二区va在线| 99久久精品国产精品久久| 久久久国产午夜精品| 精品午夜一区二区三区在线观看| 欧美日韩视频在线观看一区二区三区| 亚洲欧洲精品一区二区三区不卡| 精品一区二区三区视频在线观看| 在线播放一区二区三区| 亚洲午夜精品一区二区三区他趣| 91免费版pro下载短视频| 欧美国产丝袜视频| 国产ts人妖一区二区| 国产午夜亚洲精品理论片色戒| 蜜臀av国产精品久久久久| 8x8x8国产精品| 婷婷夜色潮精品综合在线| 在线免费观看不卡av| 亚洲综合在线观看视频| 在线视频国内自拍亚洲视频| 一区二区三区四区av|