亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? paper.tex

?? 國(guó)外免費(fèi)地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 3 頁
字號(hào):
%  filters. This could be an appropriate approach for interpolating%  both primary and multiple reflections.  %\item Missing data interpolation problems can be greatly accelerated%  by preconditioning \cite[]{Fomel.sep.94.sergey1,Fomel.sep.95.sergey1}.%  Finding an appropriate preconditioning for the offset continuation%  method is an open problem.  The non-stationary nature of the%  continuation filter make this problem particularly challenging.%\end{itemize}Analogously to integral azimuth moveout operator\cite[]{GEO63-02-05740588}, differential offset continuation can beapplied in 3-D for regularizing seismic data prior to prestack imaging.    In the next section, I return to the 2-D case to consider an  important problem of shot gather interpolation.  \section{Shot continuation}    Missing or under-sampled shot records are a common example of data  irregularity \cite[]{Crawley.sepphd.104}. The offset continuation  approach can be easily modified to work in the shot record domain.  With the change of variables $s = y - h$, where $s$ is the shot  location, the frequency-domain equation~(\ref{eqn:OC}) transforms to  the equation  \begin{equation}    h \, \left( 2\,{\partial^2 \tilde{P} \over \partial s \partial h} -       {\partial^2 \tilde{P} \over \partial h^2} \right) -     i\,\Omega \, \left({\partial \tilde{P} \over   {\partial h}} -        {\partial \tilde{P} \over   {\partial s}}\right) = 0 \;.    \label{eqn:SC}   \end{equation}  Unlike equation~(\ref{eqn:OC}), which is second-order in the  propagation variable $h$, equation~(\ref{eqn:SC}) contains only  first-order derivatives in $s$. We can formally write its solution  for the initial conditions at $s=s_1$ in the form of a phase-shift  operator:    \begin{equation}           \widehat{\widehat{P}}(s_2) = \widehat{\widehat{P}}(s_1)\,      \exp{\left[i\,k_h\,\left(s_2-s_1\right)\,          \frac{k_h\,h-\Omega}{2\,k_h\,h-\Omega}\right]}\;,    \label{eqn:SCshift}   \end{equation}  where the wavenumber~$k_h$ corresponds to the half-offset~$h$.  Equation~(\ref{eqn:SCshift}) is in the mixed offset-wavenumber  domain and, therefore, not directly applicable in practice. However,  we can use it as an intermediate step in designing a  finite-difference shot continuation filter. Analogously to the cases  of plane-wave destruction and offset continuation, shot continuation  leads us to the rational filter  \begin{equation}    \label{eqn:SCpass}    \hat{P}_{s+1}(Z_h) =     \hat{P}_{s} (Z_h) \frac{S(Z_h)}{\bar{S}(1/Z_h)}\;,  \end{equation}  The filter is non-stationary, because the coefficients of $S(Z_h)$  depend on the half-offset $h$. We can find them by the Taylor  expansion of the phase-shift equation~(\ref{eqn:SCshift}) around  zero wavenumber $k_h$. For the case of the half-offset sampling  equal to the shot sampling, the simplest three-point filter is  constructed with three terms of the Taylor expansion. It takes the  form  \begin{equation}    \label{eqn:SCfilt}    S(Z_h) = - \left(\frac{1}{12} + i\,\frac{h}{2\,\Omega}\right)\,Z_h^{-1} +     \left(\frac{2}{3} - i\,\frac{\Omega^2 + 12\,h^2}{12\,\Omega\,h}\right) +    \left(\frac{5}{12} + i\,\frac{\Omega^2 + 18\,h^2}{12\,\Omega\,h}\right)\,    Z_h\;.  \end{equation}    Let us consider the problem of doubling the shot density.  If we use  two neighboring shot records to find the missing record between  them, the problem reduces to the least-squares system  \begin{equation}    \label{eqn:SCls}    \left[\begin{array}{c}        \mathbf{S} \\        \mathbf{\bar{S}}      \end{array}\right]\,\mathbf{p}_s \approx    \left[\begin{array}{c}        \mathbf{\bar{S}}\,\mathbf{p}_{s-1} \\        \mathbf{S}\,\mathbf{p}_{s+1}      \end{array}\right]\;,  \end{equation}  where $\mathbf{S}$ denotes convolution with the numerator of  equation~(\ref{eqn:SCpass}), $\mathbf{\bar{S}}$ denotes convolution  with the corresponding denominator, $\mathbf{p}_{s-1}$ and  $\mathbf{p}_{s+1}$ represent the known shot gathers, and $\mathbf{p}_s$  represents the gather that we want to estimate. The least-squares  solution of system~(\ref{eqn:SCls}) takes the form  \begin{equation}    \label{eqn:SCsol}    \mathbf{p}_s = \left(      \mathbf{S}^T\,\mathbf{S} +      \mathbf{\bar{S}}^T\,\mathbf{\bar{S}}    \right)^{-1}\,    \left(\mathbf{S}^T\,\mathbf{\bar{S}}\,\mathbf{p}_{s-1} +      \mathbf{\bar{S}}^T\,\mathbf{S}\,\mathbf{p}_{s+1}\right)\;.  \end{equation}  If we choose the three-point filter~(\ref{eqn:SCfilt}) to construct  the operators~$\mathbf{S}$ and $\mathbf{\bar{S}}$, then the inverted  matrix in equation~(\ref{eqn:SCsol}) will have five non-zero  diagonals. It can be efficiently inverted with a direct banded  matrix solver using the $LDL^T$ decomposition \cite[]{golub}. Since  the matrix does not depend on the shot location, we can perform the  decomposition once for every frequency so that only a triangular  matrix inversion will be needed for interpolating each new shot.  This leads to an extremely efficient algorithm for interpolating  intermediate shot records.  Sometimes, two neighboring shot gathers do not fully constrain the  intermediate shot. In order to add an additional constraint, I  include a regularization term in equation~(\ref{eqn:SCsol}), as  follows:  \begin{equation}    \label{eqn:SCreg}    \mathbf{p}_s = \left(      \mathbf{S}^T\,\mathbf{S} +      \mathbf{\bar{S}}^T\,\mathbf{\bar{S}} +         \epsilon^2\,\mathbf{A}^T\mathbf{A}    \right)^{-1}\,    \left(\mathbf{S}^T\,\mathbf{\bar{S}}\,\mathbf{p}_{s-1} +      \mathbf{\bar{S}}^T\,\mathbf{S}\,\mathbf{p}_{s+1}\right)\;,  \end{equation}  where $\mathbf{A}$ represents convolution with a three-point  prediction-error filter (PEF), and $\epsilon$ is a scaling  coefficient. The appropriate PEF can be estimated from  $\mathbf{p}_{s-1}$ and $\mathbf{p}_{s+1}$ using Burg's algorithm  \cite[]{GEO37-02-03750376,Burg.sepphd.6,Claerbout.fgdp.76}. A  three-point filter does not break the five-diagonal structure  of the inverted matrix.  The PEF regularization attempts to preserve  offset dip spectrum in the under-constrained parts of the estimated  shot gather.    Figure~\ref{fig:shotin} shows the result of a shot interpolation  experiment using the constant-velocity synthetic from  Figure~\ref{fig:data}. In this experiment, I removed one of the  shot gathers from the original NMO-corrected data and interpolated  it back using equation~(\ref{eqn:SCreg}). Subtracting the true shot  gather from the reconstructed one shows a very insignificant error,  which is further reduced by using the PEF regularization (right  plots in Figure~\ref{fig:shotin}).  The two neighboring shot gathers  used in this experiment are shown in the top plots of  Figure~\ref{fig:shot3}.  For comparison, the bottom plots in  Figure~\ref{fig:shot3} show the simple average of the two shot  gathers and its corresponding prediction error. As expected, the  error is significantly larger than the error of shot  continuation. An interpolation scheme based on local dips in the  shot direction would probably achieve a better result, but it is  significantly more expensive than the shot continuation scheme  introduced above.    \plot{shot3}{width=6in,height=7in}{Top: Two synthetic shot gathers    used for the shot interpolation experiment. An NMO correction has    been applied. Bottom: simple average of the two shot gathers    (left) and its prediction error (right).}  \plot{shotin}{width=6in,height=3.5in}{Synthetic shot interpolation    results. Left: interpolated shot gathers. Right: prediction errors    (the differences between interpolated and true shot gathers),    plotted on the same scale.} \inputdir{elfshot}   A similar experiment with real data from a North Sea marine dataset  is reported in Figure~\ref{fig:elfshotin}. I removed and  reconstructed a shot gather from the two neighboring gathers shown  in Figure~\ref{fig:elfshot3}. The lower parts of the gathers are  complicated by salt dome reflections and diffractions with  conflicting dips. The simple average of the two input shot gathers  (bottom plots in Figure~\ref{fig:elfshotin}) works reasonably well  for nearly flat reflection events but fails to predict the position  of the back-scattered diffractions events. The shot continuation  method works well for both types of events (top plots in  Figure~\ref{fig:elfshotin}). There is some small and random residual  error, possibly caused by local amplitude variations.     \plot{elfshot3}{width=6in,height=3.5in}{Two real marine shot gathers    used for the shot interpolation experiment. An NMO correction has    been applied.}      \plot{elfshotin}{width=6in,height=7in}{Real-data shot interpolation    results.  Top: interpolated shot gather (left) and its prediction    error (right). Bottom: simple average of the two input shot    gathers (left) and its prediction error (right).}    Analogously to the case of offset continuation, it is possible to  extend the shot continuation method to three dimensions. A simple  modification of the proposed technique would also allow us to use  more than two shot gathers in the input or to extrapolate missing  shot gathers at the end of survey lines.%  \section{Stack and partial stack as a data regularization problem}\section{Conclusions}Differential offset continuation provides a valuable tool forinterpolation and regularization of seismic data. Starting fromanalytical frequency-domain solutions of the offset continuationdifferential equation, I have designed accurate finite-differencefilters for implementing offset continuation as a local convolutionaloperator. A similar technique works for shot continuation acrossdifferent shot gathers. Missing data are efficiently interpolated byan iterative least-squares optimization. The differential filters havean optimally small size, which assures high efficiency.Differential offset continuation serves as a bridge between integraland convolutional approaches to data interpolation. It shares thetheoretical grounds with the integral approach but is applied in amanner similar to that of prediction-error filters in theconvolutional approach.Tests with synthetic and real data demonstrate that the proposedinterpolation method can succeed in complex structural situationswhere more simplistic methods fail.\section{Acknowledgments}The financial support for this work was provided by the sponsors ofthe Stanford Exploration Project (SEP).%The 3-D North Sea dataset was released to SEP by Conoco and its%partners, BP and Mobil. For the shot continuation test, I used aNorth Sea dataset, released to SEP by Elf Aquitaine.I thank Jon Claerbout and Biondo Biondi for helpful discussions aboutthe practical application of differential offset continuation.\bibliographystyle{seg}\bibliography{SEG,SEP2,oc}%%% Local Variables: %%% mode: latex%%% TeX-master: t%%% End: 

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
911精品国产一区二区在线| 一本一道久久a久久精品| 亚洲精品乱码久久久久久| 欧美极品另类videosde| 国产午夜亚洲精品不卡| 久久青草国产手机看片福利盒子 | 国产欧美日韩视频一区二区| 欧美一区二区在线不卡| 欧美一区二区三区在线观看视频| 欧美日韩亚洲综合一区| 欧美挠脚心视频网站| 91精品国产品国语在线不卡| 日韩一区二区精品葵司在线| 精品欧美一区二区久久 | 国产一二精品视频| 国产一区二区精品久久91| 国产成人午夜精品影院观看视频 | 欧美aaa在线| 狠狠狠色丁香婷婷综合久久五月| 国产精品一区二区不卡| 91影视在线播放| 欧美欧美午夜aⅴ在线观看| 日韩精品专区在线影院重磅| 国产欧美精品国产国产专区| 亚洲美女视频在线观看| 青青草国产成人99久久| 高清国产午夜精品久久久久久| 91一区二区三区在线播放| 欧美日韩小视频| 久久一夜天堂av一区二区三区| 国产精品电影院| 亚洲不卡在线观看| 国产精品一品视频| 精品污污网站免费看| 久久久久久久久岛国免费| 亚洲精品视频观看| 国产综合成人久久大片91| 91麻豆免费看| 久久色成人在线| 亚洲国产欧美日韩另类综合| 国产乱码一区二区三区| 欧美久久婷婷综合色| 国产精品免费视频网站| 天天操天天综合网| 91网站视频在线观看| 日韩午夜精品电影| 亚洲影视资源网| 不卡区在线中文字幕| 日韩三级视频在线观看| 亚洲一区二区三区自拍| 福利电影一区二区三区| 精品久久久久久久久久久久久久久久久 | 丝袜亚洲另类丝袜在线| 99精品久久只有精品| 精品久久久久久久久久久久久久久久久 | 韩国三级电影一区二区| 欧美日韩一区精品| 亚洲欧美日韩久久精品| 成人免费看视频| 久久免费国产精品| 六月婷婷色综合| 欧美伦理电影网| 亚洲国产精品久久久久秋霞影院 | 欧美哺乳videos| 亚洲一区在线观看免费| 99久久久精品| 国产精品女人毛片| 成人免费福利片| 欧美国产日韩一二三区| 大美女一区二区三区| 国产欧美一区二区三区网站| 国产精品一区免费视频| 久久亚洲二区三区| 国产精品一区在线| 国产亚洲精品中文字幕| 国产黄人亚洲片| 日本一区二区三区在线观看| 国产一区二区91| 欧美极品美女视频| 99精品视频一区| 亚洲精品国产a| 欧美午夜精品久久久久久超碰 | 亚洲国产aⅴ成人精品无吗| 欧洲视频一区二区| 亚洲成人资源网| 欧美一卡二卡三卡四卡| 国内精品久久久久影院一蜜桃| 精品国产一区二区三区不卡 | 精品国产制服丝袜高跟| 激情图区综合网| 亚洲国产成人午夜在线一区 | 久久精品72免费观看| 日韩欧美高清dvd碟片| 韩国中文字幕2020精品| 欧美国产一区在线| 91麻豆自制传媒国产之光| 亚洲福利视频导航| 欧美不卡在线视频| 不卡一二三区首页| 日韩电影在线观看网站| 久久一二三国产| 一本大道久久a久久精品综合| 亚洲超碰精品一区二区| 久久久综合九色合综国产精品| 成人av午夜影院| 日韩国产高清影视| 国产精品久久毛片| 91.com在线观看| 成人精品电影在线观看| 丝袜美腿高跟呻吟高潮一区| 国产片一区二区三区| 欧美性做爰猛烈叫床潮| 极品少妇一区二区三区精品视频| 中文字幕在线免费不卡| 欧美精品 日韩| 不卡一二三区首页| 麻豆成人av在线| 一区二区日韩电影| 国产日韩欧美高清在线| 91精品在线观看入口| 91丨porny丨首页| 国产一区二区三区av电影| 亚洲精品国产第一综合99久久| 精品国产一区二区三区久久影院| 在线精品观看国产| 高清视频一区二区| 久久超级碰视频| 亚洲国产日产av| 一区在线观看视频| 久久久国产精华| 日韩欧美不卡一区| 欧美日韩成人一区| 日本韩国一区二区| 丁香婷婷综合五月| 国产一区二区不卡在线| 麻豆成人91精品二区三区| 亚洲成人综合视频| 亚洲一二三四区不卡| 日韩理论在线观看| 国产精品久久久爽爽爽麻豆色哟哟 | 中文字幕在线不卡国产视频| 精品乱人伦小说| 日韩欧美亚洲另类制服综合在线| 欧美在线观看一区| 91免费视频网| 97久久精品人人做人人爽50路| 春色校园综合激情亚洲| 国产精品亚洲专一区二区三区 | 亚洲国产成人在线| 久久久91精品国产一区二区精品| 日韩区在线观看| 日韩欧美国产综合一区 | 99精品一区二区三区| 成人短视频下载| 99精品欧美一区二区蜜桃免费| 成人av网站大全| yourporn久久国产精品| 丁香六月久久综合狠狠色| 粉嫩av一区二区三区粉嫩| 国产成人日日夜夜| www.av亚洲| 色吊一区二区三区| 欧美日韩一区不卡| 日韩欧美一级特黄在线播放| 精品久久五月天| 国产精品污www在线观看| 国产精品伦一区二区三级视频| 中文字幕亚洲一区二区av在线| 中文字幕在线一区| 亚洲国产精品久久人人爱| 日韩高清不卡一区二区三区| 老司机午夜精品| 丁香桃色午夜亚洲一区二区三区| 99re这里只有精品视频首页| 欧美在线观看视频一区二区| 91.com在线观看| 国产性天天综合网| 亚洲综合小说图片| 久久狠狠亚洲综合| 99国产麻豆精品| 欧美精选一区二区| 国产欧美日韩不卡| 亚洲综合成人在线视频| 久久精品国产免费| 99re成人精品视频| 日韩欧美亚洲一区二区| 国产精品久久夜| 日韩精彩视频在线观看| 成人h动漫精品一区二区| 欧美午夜精品久久久久久超碰| 亚洲精品在线观看视频| 亚洲欧美日韩中文播放| 久草精品在线观看| 色综合一区二区三区| 精品理论电影在线| 亚洲综合精品自拍| 国产成人精品亚洲777人妖| 欧美偷拍一区二区| 亚洲国产成人私人影院tom| 日韩精品欧美精品|