亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
%\def\SEPCLASSLIB{../../../../sepclasslib}\def\CAKEDIR{.}\title{Downward continuation}\author{Jon Claerbout}\maketitle\label{paper:dwnc}%{\em \today . This chapter is owned by JFC.}\section{MIGRATION BY DOWNWARD CONTINUATION}Given waves observed along the earth's surface,some well-known mathematical techniquesthat are introduced hereenable us to extrapolate(\bx{downward continue})these waves down into the earth.Migration is a simple consequence of this extrapolation.\subsection{Huygens secondary point source}\inputdir{XFig}\parWaves on the ocean have wavelengths comparableto those of waves in seismic prospecting (15-500 meters),but ocean waves move slowly enough to be seen.Imagine a long harbor barrier parallel to the beachwith a small entrance in the barrier for the passage of ships.This is shown in Figure~\ref{fig:storm}. %%\activeplot{storm}{width=5.9in}{NR}{\plot{storm}{width=5.0in}{        Waves going through a gap in a barrier        have semicircular wavefronts        (if the wavelengt h is long compared to the gap size).} %%\newslideA plane wave incident on the barrier from the open oceanwill send a wave through the gap in the barrier.It is an observed fact that the wavefront in the harborbecomes a circle with the gap as its center.The difference between this beam of water wavesand a light beam through a windowis in the ratio of wavelength to hole size.\inputdir{phasemod}\parLinearity is a property of all low-amplitude waves(not those foamy, breaking waves near the shore).This means that two gaps in the harbor barriermake two semicircular wavefronts.Where the circles cross, the wave heights combine by simple linear addition.It is interesting to think of a barrier with many holes.In the limiting case of very many holes, the barrier disappears,being nothing but one gap alongside another.Semicircular wavefronts combine to make only the incident plane wave.Hyperbolas do the same.Figure~\ref{fig:stormhole} shows hyperbolasincreasing in density from left to right. %\plot{stormhole}{width=6.0in,height=2.5in}{        A barrier with many holes (top).        Waves, $(x , t)$-space, seen beyond the barrier (bottom).        } %%\newslideAll those waves at nonvertical angles must somehow combinewith one another to extinguish all evidence of anything but the plane wave.\par\inputdir{vphyp}A Cartesian coordinate system has been superimposedon the ocean surface with  $x$  going along the beachand  $z$  measuring the distance from shore.For the analogy with reflection seismology,people are confined to thebeach (the earth's surface) where they makemeasurements of wave height as a function of  $x$  and  $t$.From this data they can make inferences aboutthe existence of gaps in the barrier out in the $(x , z)$-plane.  The first frame ofFigure \ref{fig:dc} shows the arrival time at the beachof a wave from the ocean through a gap.\plot{dc}{width=6.0in,height=2in}{        The left frame shows the hyperbolic wave arrival time        seen at the beach.         Frames to the right show arrivals        at increasing distances out in the water.        The $x$-axis is compressed        from Figure~\protect\ref{fig:storm}.        }%\newslideThe earliest arrival occurs nearest the gap.What mathematical expression determinesthe shape of the arrival curve seen in the $(x , t)$-plane?\parThe waves are expanding circles.An equation for a circle expanding with velocity  $v$  abouta point  $( x_3 , z_3 )$  is\begin{equation}{ ( x - x_3 ) }^2\ \ +\ \ {( z - z_3 )}^2\ \ =\ \ v^2 \, t^2\label{eqn:1.1}\end{equation}Considering  $t$  to be a constant,i.e.~taking a snapshot, equation~(\ref{eqn:1.1}) is that of a circle.Considering  $z$  to be a constant,it is an equation in the $(x , t)$-plane for a hyperbola.  Considered in the $(t , x , z)$-volume,equation~(\ref{eqn:1.1}) is that of a cone.Slices at various values of  $t$  show circles of various sizes.Slices of various values of  $z$  show various hyperbolas.Figure~\ref{fig:dc} shows four hyperbolas.The first is the observation made at the beach  $z_0 = 0$.  The second is a hypothetical set of observations atsome distance  $z_1$  out in the water.The third set of observations is at  $z_2$,an even greater distance from the beach.The fourth set of observations is at  $z_3$,nearly all the way out to the barrier,where the hyperbola has degenerated to a point.All these hyperbolas are from a family of hyperbolas,each with the same asymptote.The asymptote refers to a wave that turns nearly 90$^\circ$ at the gap andis found moving nearly parallel to the shore at thespeed  $dx/dt$  of a water wave.(For this water wave analogy it is presumed---incorrectly---thatthe speed of water waves is a constant independent of water depth).\parIf the original incident wave was a positive pulse,the Huygens secondary source must consist of both positiveand negative polarities to enable the destructiveinterference of all but the plane wave.So the Huygens waveform has a phase shift.In the next section,mathematical expressions will be found for the Huygens secondary source.Another phenomenon, well known to boaters,is that the largest amplitude of the Huygens semicircleis in the direction pointing straight toward shore.The amplitude drops to zero for waves moving parallel to the shore.In optics this amplitude drop-off with angle is called the{\em obliquity factor.}\subsection{Migration derived from downward continuation}\parA dictionary gives many definitions for the word{\em  run.}They are related, but they are distinct.Similarly,the word{\em  migration}in geophysical prospecting has aboutfour related but distinct meanings.The simplest is like the meaning of the word{\em  move.}When an object at some location in the $(x , z)$-planeis found at a different location at a later time  $t$,then we say it {\em  moves.}Analogously, when a wave arrival (often called an %{\em  event%} )at some location in the $(x , t)$-space of geophysical observationsis found at a different position for a different survey lineat a greater depth  $z$, then we say it {\em  migrates.}\parTo see this more clearly,imagine the four frames of Figure~\ref{fig:dc}being taken from a movie.During the movie, the depth  $z$  changesbeginning at the beach (the earth's surface)and going out to the storm barrier.The frames are superimposed in Figure \ref{fig:dcretard}(left).\sideplot{dcretard}{width=3in}{        Left shows a superposition of the hyperbolas        of Figure~\protect\ref{fig:dc}.        At the right the superposition incorporates a shift,        called retardation  $t' \,=\, t + z / v $,        to keep the hyperbola tops together.        }%\newslideMainly what happens in the movie is thatthe event migrates upward toward  $t=0$.To remove this dominating effect of vertical translationwe make another superposition,keeping the hyperbola tops all in the same place.Mathematically, the time $t$ axis is replaced by a so-called{\em  retarded}time axis  $t  '   = t + z/v$, shown in Figure \ref{fig:dcretard}(right).The second, more precise definition of{\em  migration}is the motion of an event in $ ( x , t  '   )$-space as  $z$  changes.After removing the vertical shift,the residual motion is mainly a shape change.By this definition, hyperbola tops, or horizontal layers, do not migrate.\parThe hyperbolas in Figure~\ref{fig:dcretard} really extend to infinity,but the drawing cuts each one off at a time equal  $\sqrt{2}$  timesits earliest arrival.Thus the hyperbolas shown depict only raysmoving within 45$^\circ$ of the vertical.It is good to remember this,that the ratio of first arrival time on a hyperbolato any other arrival timegives the cosine of the angle of propagation.The cutoff on each hyperbola is a ray at 45$^\circ$.Notice that the end points of the hyperbolas on the drawingcan be connected by a straight line.Also, the slope at the end of each hyperbola is the same.In physical space, the angle of any ray is$\tan \, \theta \,=\, dx /dz$.For any plane wave(or seismic event that is near a plane wave),the slope  $ v\,dt / dx$  is  $\sin \, \theta$,as you can see by considering a wavefront intercepting the earth's surfaceat angle  $\theta$.So, energy moving on a straight line in physical $(x , z)$-spacemigrates along a straight line in data $(x , t)$-space.As  $z$  increases, the energy of all angles comes together to a focus.The focus is the exploding reflector.It is the gap in the barrier.This third definition of migration is that it is theprocess that somehow pushes observational data---waveheight as a function of  $x$  and  $t$ ---from the beach to the barrier.The third definition stresses not so much the motion itself,but the transformation from the beginning point to the ending point.\parTo go further, a more general example is neededthan the storm barrier example.The barrier example is confined to making Huygens sourcesonly at some particular  $z$.Sources are needed at other depths as well.Then, given a wave-extrapolation processto move data to increasing  $z$  values,exploding-reflector images are constructed with\begin{equation}\hbox{Image}\ ( x , z )\ \eq\ \ \hbox{Wave}\ ( t=0 , x , z )\label{eqn:1.2}\end{equation}The fourth definition of migration also incorporates the definition of{\em  diffraction}as the opposite of migration.\begin{center}\begin{tabular}{ccc}  {\rm observations} & & {\rm model} \\  \begin{tabular}{|c|} \hline    \\    \ $z = 0$ \ \\    \\  all$\ t$  \\   \\    \hline  \end{tabular}  &\begin{tabular}{c}    {\rm migration} \\ $\longrightarrow$ \\ $\longleftarrow$       \\ \rm{diffraction}  \\   \end{tabular}  &\begin{tabular}{|c|} \hline   \\    \ $t = 0$ \  \\    \\  all$\ z$  \\   \\   \hline   \end{tabular}\end{tabular}\end{center}\par\vspace{1.0\baselineskip}Diffraction\sx{diffraction}is sometimes regarded as the natural process that createsand enlarges hyperboloids.{\em  Migration}\sx{migration, defined}is the computer process that does the reverse.\parAnother aspect of the use of the word{\em  migration}ariseswhere the horizontal coordinate can be either shot-to-geophone midpoint  $y$,or offset  $h$.Hyperboloids can be downward continuedin both the  $(y , t)$-  and the $(h , t)$-plane.In the $(y , t)$-plane this is called{\em  migration}or {\em  imaging,}and in the  $(h , t)$-plane it is called{\em  \bx{focus}ing}or{\em velocity analysis.}\section{DOWNWARD CONTINUATION}Given a vertically upcoming plane waveat the earth's surface,say $u(t,x,z=0)=u(t) {\rm const}(x)$,and an assumption that the earth's velocity isvertically stratified, i.e.~$v=v(z)$,we can presume that the upcoming wave down in the earthis simply time-shifted from what we see on the surface.(This assumes no multiple reflections.)Time shifting can be represented as a linear operator in the time domainby representing it as convolution with an impulse function.In the frequency domain, time shifting is simply multiplyingby a complex exponential.This is expressed as\begin{eqnarray}u( t    ,z) &=& u(     t,z=0) \ast \delta( t+z/v) \\U(\omega,z) &=& U(\omega,z=0) \ e^{-i\omega z/v}\end{eqnarray}Sign conventions must be attended to,and that is explained more fully in chapter~\ref{ft1/paper:ft1}.\subsection{Continuation of a dipping plane wave.}Next consider a plane wave \bx{dip}ping at some angle $\theta$.It is natural to imagine continuing such a wave back along a ray.Instead, we will continue the wave straight down.This requires the assumption that the plane wave is a perfect one,namely that the same waveform is observed at all $x$.Imagine two sensors in a vertical well bore.They should record the same signal except fora time shift that depends on the angle of the wave.Notice that the arrival time difference between sensorsat two different depths is greatest for vertically propagating waves,and the time difference drops to zero for horizontally propagating waves.So the time shift $\Delta t$ is $v^{-1} \cos\theta\,\Delta z$where $\theta$ is the angle between the wavefront and the earth's surface(or the angle between the well bore and the ray).Thus an equation to downward continue the wave is\begin{eqnarray}U( \omega , \theta ,z+\Delta z) &=&U( \omega , \theta ,z) \  \exp ( \,  -i \omega \, \Delta t)                                                        \\U( \omega , \theta ,z+\Delta z) &=&U( \omega , \theta ,z) \  \exp \left(         \,  -i \omega \,         {\Delta z \cos\theta \over v}\  \right)\label{eqn:dctheta}\end{eqnarray}Equation~(\ref{eqn:dctheta})is a downward continuation formula for any angle $\theta$.Following methods of chapter~\ref{wvs/paper:wvs} we can generalizethe method to media where the velocity is a function of depth.Evidently we can apply equation~(\ref{eqn:dctheta})for each layer of thickness $\Delta z$,and allow the velocity vary with $z$.This is a well known approximation that handles the timing correctlybut keeps the amplitude constant (since $|e^{i\phi}|=1$)when in real life,the amplitude should varybecause of reflection and transmission coefficients.Suffice it to say that in practical earth imaging,this approximation is almost universally satisfactory.\parIn a stratified earth,it is customary to eliminate the angle $\theta$ which is depth variable,and change it to the Snell's parameter $p$ which is constant for all depths.Thus the downward continuation equation for any Snell's parameter is\begin{equation}U( \omega , p,z+\Delta z) \eqU( \omega , p,z) \  \exp \left( \,  -\  {i \omega \Delta z \over v(z) } \\sqrt{1-p^2v(z)^2}  \right)

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产综合91精品麻豆| 精品久久久久久亚洲综合网| 国产精品久久99| 成人精品免费视频| 国产精品久久久久久久久果冻传媒 | 午夜在线成人av| 欧美乱熟臀69xxxxxx| 久久精品国产**网站演员| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 欧美tk—视频vk| 成人午夜电影网站| 亚洲一区二区三区免费视频| 欧美一区二区三区思思人| 国产在线精品视频| 亚洲天堂精品在线观看| 在线播放91灌醉迷j高跟美女 | 亚洲精品v日韩精品| 欧美日韩国产免费一区二区| 久久狠狠亚洲综合| 国产精品久久久久久户外露出| 日本道色综合久久| 捆绑变态av一区二区三区| 欧美国产精品中文字幕| 欧美日韩一区二区欧美激情 | 亚洲一区精品在线| 欧美不卡一区二区| 91老师国产黑色丝袜在线| 免费视频最近日韩| 最新热久久免费视频| 欧美乱熟臀69xxxxxx| 成人av小说网| 免费高清不卡av| 尤物视频一区二区| 久久综合久久久久88| 欧美视频精品在线| 国产.欧美.日韩| 日产国产高清一区二区三区| 一区在线观看免费| 日韩精品一区二区三区蜜臀| 91国产丝袜在线播放| 国产伦精一区二区三区| 天天操天天干天天综合网| 国产精品久久久一区麻豆最新章节| 欧美电影在哪看比较好| 色综合久久88色综合天天| 国内精品在线播放| 三级欧美在线一区| 一区二区三区在线免费播放| 一区二区成人在线视频| 国产午夜精品一区二区 | 奇米精品一区二区三区在线观看| 中文字幕一区二区三区视频| 亚洲精品一区在线观看| 91麻豆精品国产91久久久使用方法 | 国产精品伦理在线| 精品国精品国产| 91精品国产欧美一区二区成人| 一本一道综合狠狠老| 成人在线视频首页| 国产真实乱子伦精品视频| 日本成人中文字幕| 婷婷综合在线观看| 亚洲午夜在线电影| 一区二区三区四区在线| 中文字幕一区二区三区在线不卡| 久久久亚洲综合| 精品国产一区二区三区忘忧草 | 中文字幕一区二区不卡| 国产午夜精品一区二区| 久久精品日韩一区二区三区| 日韩精品综合一本久道在线视频| 777久久久精品| 88在线观看91蜜桃国自产| 欧美日韩日日摸| 欧美午夜在线一二页| 91福利精品第一导航| 在线观看亚洲专区| 日本道色综合久久| 欧美吻胸吃奶大尺度电影| 欧美图片一区二区三区| 色狠狠桃花综合| 欧美日韩一区三区四区| 欧美电影一区二区三区| 欧美成人性福生活免费看| 精品va天堂亚洲国产| 2020国产成人综合网| 久久久久久电影| 国产精品国产三级国产aⅴ原创 | 久久99久久99小草精品免视看| 免费成人美女在线观看.| 久久99国产精品久久99| 国产精品88av| av在线不卡观看免费观看| 一本大道久久a久久综合婷婷| 欧美午夜一区二区三区 | 久久综合久色欧美综合狠狠| 国产精品美女一区二区| 亚洲欧美成人一区二区三区| 亚洲成人动漫av| 久久99精品国产麻豆不卡| 国产不卡一区视频| 91福利精品视频| 日韩精品一区二区三区蜜臀| 国产亚洲va综合人人澡精品 | 国产美女视频一区| av在线播放成人| 欧美精品日韩综合在线| 久久久久88色偷偷免费| 综合久久综合久久| 日韩黄色免费网站| 一区二区三区欧美激情| 自拍偷在线精品自拍偷无码专区| 亚洲一区二区视频在线| 国产真实乱偷精品视频免| 色偷偷88欧美精品久久久| 91精品国产色综合久久不卡蜜臀 | 色94色欧美sute亚洲13| 欧美人狂配大交3d怪物一区| 久久日一线二线三线suv| 亚洲欧美日韩电影| 精品一区二区影视| 99久久久无码国产精品| 日韩欧美一二区| 亚洲欧美激情插| 国产精品综合久久| 欧美亚洲综合网| 国产亚洲一区二区三区| 亚洲成av人片在线| proumb性欧美在线观看| 欧美一卡二卡三卡| 亚洲视频在线观看三级| 精品一区二区免费视频| 欧美在线影院一区二区| 欧美激情一区不卡| 久草中文综合在线| 欧美熟乱第一页| 中文字幕一区不卡| 国产美女娇喘av呻吟久久| 7878成人国产在线观看| 亚洲欧美日韩系列| 一区二区三区毛片| 国产精品一区专区| 欧美片在线播放| 亚洲四区在线观看| 国产精品自在欧美一区| 91精品国产综合久久久久久| 一区二区三区中文免费| 成人免费视频视频在线观看免费| 欧美mv日韩mv亚洲| 丝袜诱惑亚洲看片| 欧美色涩在线第一页| 国产精品女人毛片| 国产成人免费在线视频| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 国产精品一区专区| 精品久久国产97色综合| 免费欧美日韩国产三级电影| 欧美日韩一区二区三区在线看 | 欧美日韩一级片在线观看| 中文字幕字幕中文在线中不卡视频| 国产剧情一区二区三区| 亚洲精品一区二区三区在线观看 | 国产精品一级黄| 精品国产乱码久久久久久久 | 亚洲精品午夜久久久| aa级大片欧美| 亚洲视频在线观看一区| av一区二区三区在线| 国产女主播一区| 成人午夜碰碰视频| 国产精品美女www爽爽爽| 波多野结衣在线aⅴ中文字幕不卡| 国产欧美精品一区二区三区四区| 国产成人一级电影| 国产精品区一区二区三| 成a人片亚洲日本久久| 国产精品国产自产拍高清av | 国产综合色产在线精品| 精品国产一区二区国模嫣然| 国产一区二区三区在线观看免费视频| 欧美r级电影在线观看| 国产成人三级在线观看| 中文字幕中文字幕一区| 在线亚洲人成电影网站色www| 一区二区三区在线看| 欧美日韩免费在线视频| 日本不卡一区二区三区高清视频| 欧美成人综合网站| 岛国精品在线观看| 一区二区三区中文免费| 5566中文字幕一区二区电影| 久久99国产精品麻豆| 欧美国产乱子伦 | 丝袜美腿高跟呻吟高潮一区| 欧美成人一区二区三区片免费 | 91精品国产综合久久久蜜臀图片| 久久爱另类一区二区小说| 国产精品色呦呦| 欧洲国产伦久久久久久久| 免费看日韩精品|