亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 4 頁
字號:
                -\bar Z_0 & 1        &     .    &  .  \\                .         &-\bar Z_1 &     1    &  .  \\                .         & .        &-\bar Z_2 &  1        \end{array}        \right]\left[        \begin{array}{c}                \tilde s_0 \\                \tilde s_1 \\                \tilde s_2 \\                \tilde s_3                \end{array}        \right]\eq\left[        \begin{array}{c}                u_0 \\                u_1 \\                u_2 \\                u_3                \end{array}        \right] \ \eq \bold u\label{eqn:toomuch}\end{equation}where $\tilde s(z)$ (summed over frequency) is the migrated image.The adjointness of equation~(\ref{eqn:matrecur}) and (\ref{eqn:toomuch})seems obvious,but it is not the elementary form we are familiar withbecause the matrix multiplies the {\em  output}(instead of multiplying the usual {\em  input}).To prove the adjointness, notice thatequation~(\ref{eqn:matrecur}) is equivalent to $\bold u = {\bold M}^{-1}\bold s$ whoseadjoint, by definition,is $\tilde{\bold s} = ({\bold M}^{-1})' \bold u$which is $\tilde{\bold s} = {(\bold M')}^{-1} \bold u$(because of the basic mathematical factthat the adjoint of an inverse is the inverse of the adjoint)which gives $\bold M' \tilde\bold s = \bold u$which is equation~(\ref{eqn:toomuch}).\parWe observe the wavefield only on the surface $z=0$,so the adjointness ofequations~(\ref{eqn:matrecur})and (\ref{eqn:toomuch})is academic because it relates the wavefield at all depthswith the source at all depths.We need to truncate $\bold u$ to its first coefficient $u_0$since the upcoming wave is known only at the surface.This truncation changes the adjoint in a curious way.We rewrite equation~(\ref{eqn:matrecur})using a truncation operator $\bold T$ that isthe row matrix $\bold T = [1,0,0,\cdots ]$ getting$\bold u_0 = \bold T\bold u = \bold T \bold M^{-1} \bold s$.Its adjoint is$\hat {\bold s} = (\bold M^{-1})' \bold T' \bold u_0'                = (\bold M')^{-1} \bold T' \bold u_0' $or$\bold M' \hat {\bold s} = \bold T'\bold u_0$which looks like\begin{equation}\bold M' \, \tilde {\bold s}  \eq\left[        \begin{array}{cccc}                1         & .        &     .    &  .  \\                -\bar Z_0 & 1        &     .    &  .  \\                .         &-\bar Z_1 &     1    &  .  \\                .         & .        &-\bar Z_2 &  1        \end{array}        \right]\left[        \begin{array}{c}                \tilde s_0 \\                \tilde s_1 \\                \tilde s_2 \\                \tilde s_3                \end{array}        \right]\eq\left[        \begin{array}{c}                u_0 \\                0 \\                0 \\                0                \end{array}        \right] \ \label{eqn:conjrecur}\end{equation}The operator \ref{eqn:conjrecur} is a recursion\sx{recursion, downward continuation}beginning from $\tilde s_0 = u_0$and continuing downward with\begin{equation}\tilde s_k \eq \bar Z_{k-1} \  \tilde s_{k-1}\label{eqn:imaging}\end{equation}\parA final feature of the migration applicationis that the image is formed from $\tilde \bold s$by summing over all frequencies.Although I believe the mathematics above%and the code in subroutine \texttt{gazadj()} \vpageref{/prog:gazadj},I ran the dot product test to be sure!%\progdex{gazadj}{phase shift mig.}\noindentFinally, a few small details about the code.The loop on spatial frequency {\tt ikx}begins at {\tt ikx=2}.The reason for the 2, instead of a 1,is to omit the Nyquist frequency.If the Nyquist frequency were to be included,it should be divided into one half at positive Nyquist and one halfat negative Nyquist, which would clutter the codewithout adding practical value.Another small detail is that the loopon temporal frequency {\tt iw}begins at {\tt iw=1+nt/2}which effectly omits negative frequencies.This is purely an economy measure.Including the negative frequencies would assure that thefinal image be real, no imaginary part.Omitting negative frequencies simply gives an imaginary partthat can be thrown away,and gives the same real image, scaled by a half.The factor of two speed up makes these tiny compromises well worthwhile.\subsection{Vertical exaggeration example}\inputdir{vofz}To examine questions of \bx{vertical exaggeration}and spatial \bx{resolution}we consider a line of point scatters alonga $45^\circ$ dipping line in $(x,z)$-space.We impose a linear velocity gradient such asthat typically found in the Gulf of Mexico, i.e.~$v(z)=v_0+\alpha z$with $\alpha=1/2 s^{-1}$.Viewing our point scatterers as a function of traveltime depth,$\tau = 2\int_0^z dz/v(z)$in Figure~\ref{fig:sagmod}we see, as expected,that the points,although separated by equal intervals in $x$,are separated by shorter time intervals with increasing depth.The points are uniformly separatedalong a straight line in $(x,z)$-space,but they are nonuniformly separated along a {\em  curved} linein $(x,\tau)$-space.The curve is steeper near the earth's surfacewhere $v(z)$ yields the greatest vertical exaggeration.Here the vertical exaggeration is about unity (no exageration)but deeper the vertical exaggeration is less than unity(horizontal exaggeration).\sideplot{sagmod}{width=3.00in}{        Points along a 45 degree slope as seen        as a function of traveltime depth.        }%\newslideApplying %subroutine \texttt{gazadj()} \vpageref{/prog:gazadj}the points spray out into hyperboloids (like hyperbolas, but not exactly)shown in Figure~\ref{fig:sagdat}.The obvious feature of this synthetic data is that the hyperboloidsappear to have different asymptotes.\sideplot{sagdat}{width=3.00in}{        The points of Figure~\protect\ref{fig:sagmod} diffracted        into hyperboloids.        }%\newslideIn fact, there are no asymptotes because an asymptoteis a ray going horizontal at a more-or-less constant depth,which will not happen in this modelbecause the velocity increases steadily with depth.\par(I should get energetic and overlay these hyperboloidson top of the exact hyperbolas of the Kirchhoff method,to see if there are perceptible traveltime differences.)\subsection{Vertical and horizontal resolution}In principle, migration converts hyperbolas to points.In practice, a hyperbola does not collapse to a point,it collapses to a {\em  focus.}A focus has measurable dimensions.Vertical resolution is easily understood.For a given frequency, higher velocity gives longer vertical wavelengthand thus less resolution.When the result of migration is plotted as a function oftraveltime depth $\tau$ instead of true depth $z$, however,enlargement of focus with depth is not visible.\parHorizontal resolution works a little differently.Migration is said to be ``good'' because it increases spatial \bx{resolution}.It squeezes a large hyperbola down to a tiny focus.Study the focal widths in Figure~\ref{fig:sagres}. %Notice the water-velocity focuses hardly broaden with depth.We expect some broadening with depth because the latehyperbolas are cut off at their sides and bottom(an aperture effect),but there is no broadening herebecause the periodicity of the Fourier domainmeans that events are not truncated but wrapped around.\plot{sagres}{width=6.00in,height=2.25in}{        Left is migration back to a focus        with a constant, water-velocity model.        Right is the same,        but with a Gulf of Mexico velocity,        i.e.~the hyperboloids of Figure~\protect\ref{fig:sagdat}        migrated back to focuses.	Observe focus broadening with depth.        }%%\newslide\parWhen the velocity increases with depth,wider focuses are found at increasing depth.Why is this?Consider each hyperbola to be made of many short plane wave segments.Migration moves all the little segments on top of each other.The sharpness of a focus cannot be narrowerthan the width of each of the many plane-wave segmentsthat superpose to make the focus.The narrowest of these plane-wave segmentsis at the steepest part of a hyperbola asymptote.Deeper reflectors (which have later tops)have less steep asymptotes becauseof the increasing velocity.Thus deeper reflectors with faster RMS velocities have wider focusesso the deeper part of the image is more blurred.A second way to understand increased blurring with depthis from equation~(\ref{eqn:kxofvp}),that the horizontal frequency $k_x=\omega p = \omega v^{-1}\sin\theta$is independent of depth.The steepest possible angle occurs when $|\sin\theta| = 1$.Thus, considering all possible angles,the largest $|k_x|$ is $|k_x|=|\omega|/v(z)$.Larger values of horizontal frequency $|k_x|$could help us get narrower focuses,but the deeper we go (faster velocity we encounter),the more these high frequencies are lostbecause of the evanescent limit $|k_x|\le |\omega/v(z)|$.The limit is where the ray goes no deeper but bends around andcomes back up again without ever reflecting.Any ray that does this many times is said to be a surface-trapped wave.It cannot sharpen a deep focus.%\par%When the velocity increases with depth,%wider focuses are found at increasing depth.%Why is this?%Deep waves travel fast and so they must have a long wavelength.%As a deeper wave comes up its wavelength shrinks,%but its horizontal component $k_x$%remains constant according to Snell's law%(equation~(\ref{eqn:kxofvp}))%so the horizontal component measured at the earth's surface%is exactly the same as at the bottom of the ray%where it is determined only by the frequency and the material velocity.%The sharpness of a focus cannot be narrower%than the width of each of the many plane-wave segments%that superpose to make the focus,%and the narrowest of these plane-wave segments is at the%the steepest part of a hyperbola asymptote.%The deeper hyperboloids (which have later tops) have less steep asymptotes%which is why deep focuses are wider.%%The depth of a scatterer is indicated by the hyperbola top.%The long wavelengths from great depth show up%as less-steep asymptotes on the deeper hyperboloids.\subsection{Field data migration}Application of subroutine~\texttt{gazadj()} \vpageref{/prog:gazadj}to the Gulf of Mexico data set processed in earlier chaptersyields the result in Figure~\ref{fig:wgphase}.\plot{wgphase}{width=6.20in,height=8.5in}{        Phase shift migration of        Figure~\protect\ref{vela/fig:agcstack}.%        Press button for movie to compare to stack and Kirchhoff migration of%        Figure~\protect\ref{vela/fig:wgstack}.        }%\newslide%\subsection{Downward continuation movie such as jfcmig}%This was Jim's idea and I don't see a way to build it%without doing something artificial.%This fits better in a finite-difference migration chapter.\begin{exer}\itemDevise a mathematical expression for a plane wavethat is an impulse function of time with a propagation angle of 15$^\circ$from the vertical $z$-axis in the plus  $z$  direction.Express the result in the domain of\item[{}] (a) $\ \ (t,x,z)$\item[{}] (b) $\ \ ( \omega ,x,z)$\item[{}] (c) $\ \ ( \omega , k_x , z)$\item[{}] (d) $\ \ ( \omega ,p,z)$\item[{}] (e) $\ \ ( \omega , k_x , k_z)$\item[{}] (f) $\ \ (      t , k_x , k_z)$                \todo{  %remove this temporarily to save two sheets of paper.\itemSuppose that you are able to observe some shear waves atordinary seismic frequencies.Is the spatial \bx{resolution} better, equal, or worse than usual?Why?\itemEvolution of a wavefield with time is described by\begin{equation}p(x , z , t) \ =\ \int  \int \  \left[\,P( k_x , k_z , t=0 )\, e^{ -i \omega ( k_x , k_z ) t } \right] \ e^{ ik_x x + ik_z z }  dk_x \, dk_z \end{equation}Let  $ P(k_x , k_z , 0  ) $  be constant, signifying a pointsource at the origin in  $(x , z)$-space.Let  $t$  be very large, meaning thatphase = $ \phi = [ - \omega ( k_x , k_z ) \ +$$ k_x \  (x / t) \ +\  k_z \  (z /t) ] t $  inthe integration is rapidly alternating withchanges in  $ k_x $  and  $ k_z$.Assume that the only significant contributionto the integral comes when the phase is stationary,that is,where  $ \partial \phi / \partial k_x $  and$ \partial \phi / \partial k_z $  both vanish.Where is the energy in $(x , z , t)$-space?\itemDownward continuation of a wave is expressed by\begin{equation}p(x , z , t) \ =\  \int \int \  \left[\,P( k_x , z=0 , \omega ) \  e^{ik_z ( \omega , k_x ) z } \right] \ e^{{-i} \omega t + ik_x x } \  d \omega \, dk_x\end{equation}Let  $ P(k_x , 0 , \omega  ) $  be constant, signifying a pointsource at the origin in  $(x , t)$-space.Where is the energy in $(x , z , t)$-space?                     } %remove this temporarily to save two sheets of paper.\end{exer}%\iex{Exer/Intro}{assignment}%\iex{Exer/Shift}{assignment}%\iex{Exer/2Dft}{assignment}%\iex{Exer/Phasemod}{assignment}%\iex{Exer/Phasedown}{assignment}%\iex{Exer/Phasemig}{assignment}%\iex{Exer/Stolt1}{assignment}%\iex{Exer/Stolt2}{assignment}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久看人人爽人人| 欧美一级日韩不卡播放免费| 蜜臀va亚洲va欧美va天堂| 一区二区三区精品在线观看| 国产欧美视频一区二区| 欧美精品一区二区三区四区 | 五月婷婷综合网| 亚洲卡通动漫在线| 亚洲激情五月婷婷| 亚洲午夜久久久久中文字幕久| 亚洲色图.com| 亚洲三级理论片| 亚洲婷婷综合久久一本伊一区| 国产精品久久久久久久岛一牛影视| 国产精品嫩草99a| 中文字幕中文字幕中文字幕亚洲无线| 国产精品久久久久久福利一牛影视 | 中文字幕不卡三区| 国产欧美日本一区视频| 国产精品系列在线| 亚洲视频免费在线| 亚洲韩国一区二区三区| 日产欧产美韩系列久久99| 美腿丝袜亚洲三区| 国产福利91精品| 在线一区二区三区四区五区 | 一区二区成人在线| 午夜视频在线观看一区二区| 日韩精品成人一区二区三区| 国产剧情在线观看一区二区| 99久久精品免费精品国产| 欧美在线看片a免费观看| 欧美一级片在线| 国产精品乱码一区二区三区软件| 亚洲免费观看高清完整版在线| 亚洲444eee在线观看| 韩国中文字幕2020精品| 91美女在线观看| 日韩精品一区国产麻豆| 国产精品国产三级国产普通话99| 香蕉乱码成人久久天堂爱免费| 黄页网站大全一区二区| 色综合天天视频在线观看 | 国产一区二区三区日韩| 99精品视频一区二区| 91精品国产综合久久久久久久| 亚洲国产高清在线| 日本在线不卡一区| 99免费精品视频| 精品日产卡一卡二卡麻豆| 亚洲精品久久久久久国产精华液| 国产在线精品免费| 欧美日韩在线一区二区| 亚洲欧洲日产国码二区| 久久99精品久久久久久| 欧美日韩一区二区欧美激情| 中文av一区特黄| 激情文学综合网| 欧美精品一二三四| 亚洲乱码日产精品bd| 丰满亚洲少妇av| xfplay精品久久| 美女在线视频一区| 欧美日韩国产综合草草| 国产精品视频麻豆| 国产乱子伦一区二区三区国色天香| 欧美精品粉嫩高潮一区二区| 一区二区三区在线免费| 成人18精品视频| 国产日韩欧美在线一区| 国内精品久久久久影院薰衣草 | 欧美xxx久久| 午夜精品久久久| 欧美日韩一区不卡| 伊人开心综合网| 在线免费av一区| 亚洲一区二区三区激情| 欧美在线小视频| 亚洲狠狠爱一区二区三区| 欧美综合色免费| 亚洲福利视频一区二区| 欧美三级资源在线| 亚洲成av人片一区二区| 欧美日韩国产美| 秋霞国产午夜精品免费视频| 日韩一二在线观看| 久久国产三级精品| 久久婷婷国产综合精品青草| 国产精品亚洲视频| 老司机免费视频一区二区三区| 亚洲乱码精品一二三四区日韩在线| 国产91综合一区在线观看| 久久久噜噜噜久久人人看| 国产精品一区在线| 国产欧美日韩激情| 91视视频在线直接观看在线看网页在线看| 国产欧美日韩卡一| 91亚洲精华国产精华精华液| 亚洲成人资源在线| 日韩精品一区二区三区在线| 国产在线不卡视频| 国产精品久久午夜夜伦鲁鲁| 欧美亚洲图片小说| 欧美aaaaaa午夜精品| 国产亚洲1区2区3区| www.亚洲色图.com| 亚洲午夜久久久久| 久久综合九色综合97婷婷| 成人精品视频.| 午夜精彩视频在线观看不卡| 2024国产精品| 一本色道综合亚洲| 精品在线一区二区三区| 中文字幕亚洲精品在线观看| 欧美精品乱码久久久久久按摩| 国产在线不卡一区| 亚洲综合视频在线观看| 欧美精品一区二区久久婷婷| 色婷婷精品大视频在线蜜桃视频| 五月天婷婷综合| 国产精品嫩草99a| 日韩一区二区精品葵司在线| 99精品视频在线播放观看| 日韩精品五月天| 亚洲丝袜制服诱惑| 亚洲精品一区二区三区四区高清| 色94色欧美sute亚洲线路一ni| 久久国产精品免费| 亚洲va天堂va国产va久| 国产日韩欧美高清在线| 91精品国产综合久久精品图片 | 国产亚洲精品bt天堂精选| 欧美日本在线播放| gogo大胆日本视频一区| 国产在线国偷精品免费看| 日韩在线一区二区| 亚洲柠檬福利资源导航| 欧美极品少妇xxxxⅹ高跟鞋| 日韩视频在线观看一区二区| 欧美午夜寂寞影院| 99精品桃花视频在线观看| 国产99久久久久| 国精产品一区一区三区mba桃花| 亚洲大片精品永久免费| 中文字幕综合网| 国产精品蜜臀av| 久久久久久一二三区| 欧美va亚洲va香蕉在线| 制服丝袜亚洲播放| 欧美性猛交xxxx乱大交退制版| 91影院在线免费观看| 99精品视频中文字幕| 99在线热播精品免费| 成人精品免费看| 岛国av在线一区| 懂色av中文字幕一区二区三区 | 中文字幕在线不卡| 国产日韩精品视频一区| 久久女同性恋中文字幕| 欧美精品一区二区三区四区| 久久久www免费人成精品| 26uuu精品一区二区| 国产色产综合产在线视频 | 成人一区二区三区中文字幕| 国产精品一区二区无线| 国产99久久久久| av成人免费在线| 91久久线看在观草草青青| 欧美中文字幕一区二区三区| 在线成人午夜影院| 日韩免费看网站| 国产亚洲午夜高清国产拍精品| 国产欧美一区视频| 国产精品久久二区二区| 亚洲激情成人在线| 偷拍日韩校园综合在线| 美女任你摸久久| 国产精品一区二区免费不卡| 99久久免费国产| 欧美亚洲日本一区| 91精品国产色综合久久ai换脸| 久久综合九色综合97婷婷女人| 中文字幕在线不卡一区| 亚洲国产wwwccc36天堂| 精品一区二区三区在线观看国产| 丰满放荡岳乱妇91ww| 欧洲一区二区三区免费视频| 日韩欧美成人一区| 国产精品色婷婷久久58| 亚洲va国产va欧美va观看| 精品一区二区影视| 94-欧美-setu| 91精品国产手机| 国产精品三级视频| 日韩成人dvd| 99国产精品久久久久久久久久| 日韩一区二区麻豆国产| 一区精品在线播放| 蜜桃视频一区二区三区在线观看| av不卡在线播放|