亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
%\def\SEPCLASSLIB{../../../../sepclasslib}\def\CAKEDIR{.}\title{Dip and offset together}\author{Jon Claerbout}\maketitle\label{paper:dpmv}\def\vhalf{v_{\rm half}}\par\footnote{%	Jim Black prepared many figures%	and the geometrical derivations at the end of the chapter.	Matt Schwab prepared a draft of the Gardner DMO derivation.	Shuki Ronen gave me the ``law of cosines'' proof.	}Whendip and offset are combined,some serious complications arise.For many years it was common industry practiceto ignore these complications and to handle dip and offset separately.  Thus offset was handled by velocity analysis, normal moveout and stack (chapter~\ref{vela/paper:vela}).And dip was handled by zero-offset migration after stack (chapters~\ref{krch/paper:krch} and \ref{dwnc/paper:dwnc}).This practice is a good approximation only whenthe dips on the section are small.We need to handle large offset angles at the sametime we handle large dip anglesat the same time we are estimating rock velocity.It is confusing!Here we see the important stepsof bootstrapping yourself towards both the velocity and the image.%In fact, using this {\it separable} style%of seismic processing generally leads to seismic sections on which%the steeply-dipping reflectors are artificially attenuated relative %to the horizontal reflectors.%The easiest way to understand how things fail %is to consider the case of a planar dipping reflector at finite offset.\section{PRESTACK MIGRATION}\inputdir{XFig}%One solution to the problems pointed out in the previous section%is to forget about NMO, stack, and zero-offset migration%and replace them by prestack migration.Prestack migration creates an image of the earth's reflectivitydirectly from prestack data.It is an alternative tothe ``\bx{exploding reflector}'' conceptthat proved so useful in zero-offset migration.In \bx{prestack migration},\sx{migration!prestack}we consider both downgoing and upcoming waves.\parA good starting point for discussing prestack migration is a reflecting point within the earth.A wave incident on the point from any directionreflects waves in all directions.This geometry is particularly important becauseany model is a superposition of such point scatterers.The point-scatterer geometry for a pointlocated at $(x,z)$ is shown in Figure~\ref{fig:pgeometry}. %\sideplot{pgeometry}{width=3.5in}{  Geometry of a point scatterer.}The equationfor travel time  $t$  is the sum of the two travel paths is\begin{equation}t\,v\  \eq \  \sqrt { z^2\ +\ {( s \ -\  x ) }^2}  \ +\  \sqrt { z^2 \ +\ {( g \ -\  x )}^2} \label{eqn:dsrsg}\end{equation}We could model field datawith equation~(\ref{eqn:dsrsg}) by copying reflections from any pointin $(x,z)$-space into $(s,g,t)$-space.The adjoint program would form an image stacked overall offsets.This process would be called prestack migration.The problem here is that the real problemis estimating velocity.In this chapter we will see that it is not satisfactoryto use a horizontal layer approximation to estimate velocity,and then use equation~(\ref{eqn:dsrsg}) to do migration.Migration becomes sensitive to velocity when wide angles are involved.Errors in the velocity would spoil whatever benefit couldaccrue from prestack (instead of poststack) migration.\subsection{Cheops' pyramid}\sx{Cheops' pyramid}\inputdir{Math}\parBecause of the importance of the point-scatterer model,we will go to considerable lengths to visualize the functional dependenceamong $t$, $z$, $x$, $s$, and $g$ in equation (\ref{eqn:dsrsg}).This picture is more difficult---by one dimension---than isthe conic section of the exploding-reflector geometry.\parTo begin with,suppose that the first square root in (\ref{eqn:dsrsg}) is constantbecause everything in it is held constant.This leaves the familiar hyperbola in  $(g,t)$-space,except that a constant has been added to the time.Suppose instead that the other square root is constant.This likewise leaves a hyperbola in  $(s,t)$-space.In  $(s,g)$-space, travel time is a function of  $s$  plus a function of  $g$.I think of this as one coat hanger, which is parallel to the $s$-axis, being hung from another coat hanger,which is parallel to the $g$-axis.\parA view of the traveltime pyramid on the  $(s,g)$-planeor the  $(y,h)$-plane is shown in Figure~\ref{fig:cheop}a.\plot{cheop}{height=3.4in}{	Left is a picture of the traveltime pyramid	of equation (\protect(\ref{eqn:dsrsg}))	for fixed  $x$  and  $z$.	The darkened lines are constant-offset sections.	Right is a cross section through the pyramid	for large  $t$  (or small  $z$).  (Ottolini)	}%\newslideNotice that a cut through the pyramid atlarge  $t$  is a square, the corners of which have been smoothed.At very large  $t$,a constant value of  $t$  is the square contoured in  $(s,g)$-space,as in Figure~\ref{fig:cheop}b.Algebraically, the squareness becomes evident for a point reflectornear the surface, say,  $z  \to  0$.Then (\ref{eqn:dsrsg}) becomes\begin{equation}v\,t\  \eq \ | s \ -\  x |\ \ +\ \ | g \ -\  x |\label{eqn:2.4}\end{equation}The center of the square is located at  $(s,g) = (x,x)$.Taking travel time  $t$  to increase downwardfrom the horizontal plane of  $(s,g)$-space,the square contour is like a horizontal slice through the Egyptian pyramidof Cheops.To walk around the pyramid at a constant altitude is to walk around a square.Alternately,the altitude change of a traverse over$g$  (or $s$) at constant$s$  (or $g$) is simply a constant plus an absolute-value function.\parMore interesting and less obvious are the curveson common-midpoint gathers and constant-offset sections.Recall the definition that the midpoint between the shot and geophone is  $y$.Also recall that  $h$  is half the horizontal offsetfrom the shot to the geophone.\begin{eqnarray}y\ \ \ \ &=&\ \ \ \ {g \ +\  s  \over 2 }\label{eqn:2.5a}\\h\ \ \ \ &=&\ \ \ \ {g \ -\  s  \over 2 }\label{eqn:2.5b}\end{eqnarray}A traverseof $y$ at constant $h$ is shown in Figure~\ref{fig:cheop}.At the highest elevation on the traverse,you are walking along a flat horizontalstep like the flat-topped hyperboloids of Figure~\ref{fig:twopoint}.Some erosion to smooth the top and edges of the pyramidgives a model for nonzero reflector depth.\parFor rays that are near the vertical,the traveltime curves are far from the hyperbola asymptotes.Then the square roots in (\ref{eqn:dsrsg}) may be expanded in Taylor series,giving a parabola of revolution.This describes the eroded peak of the pyramid.\subsection{Prestack migration ellipse}\inputdir{dmovplot}Denoting the horizontal coordinate $x$ of the scattering point by $y_0$Equation (\ref{eqn:dsrsg}) in $(y,h)$-space is\begin{equation}t\,v\  \eq \  \sqrt { z^2\ +\ {( y \ -\  y_0  \  - \  h) }^2}       \ +\  \sqrt { z^2\ +\ {( y \ -\  y_0   \ + \  h) }^2} \label{eqn:dsryh}\end{equation}A basic insight into equation (\ref{eqn:dsrsg}) is to noticethat at constant-offset  $h$  and constant travel time  $t$the locus of possible reflectors isan ellipse in the $(y ,z)$-plane centered at $y_0$.The reason it is an \bx{ellipse}follows from the geometric definition of an ellipse.To draw an ellipse,place a nail or tack into $s$ on Figure~\ref{fig:pgeometry}and another into $g$.Connect the tacks by a stringthat is exactly long enough to go through  $(y_0 ,z)$.An ellipse going through  $(y_0 ,z)$  may be constructedby sliding a pencil along the string,keeping the string tight.The string keeps the total distance  $tv$  constant as is shown inFigure~\ref{fig:ellipse1}\sideplot{ellipse1}{width=3.5in}{	Prestack migration ellipse, the locus of all scatterers with	constant traveltime for	source S and receiver G.	}%\newslide\parReplacing depth $z$ in equation~(\ref{eqn:dsryh})by the vertical traveltime depth$\tau = 2z/v=z/\vhalf$ we get\begin{equation}t  \eq   {1 \over 2}\       \left(	\sqrt { \tau^2\ +\ [( y-y_0)-h]^2 / \vhalf^2 } 	\ +\  	\sqrt { \tau^2\ +\ [( y-y_0)+h]^2 / \vhalf^2 } 	\ 	\right)\label{eqn:dsryhtau}\end{equation}\subsection{Constant offset migration}\inputdir{matt}\sx{constant-offset migration}\sx{migration!constant-offset}Considering $h$ in equation~(\ref{eqn:dsryhtau})to be a constant,enables us to write a subroutine for migrating constant-offset sections.%Subroutine \texttt{flathyp()} \vpageref{/prog:flathyp} is easily prepared%from subroutine \texttt{kirchfast()} \vpageref{/prog:kirchfast} by%replacing its hyperbola equation with equation~(\ref{eqn:dsryhtau}).%\progdex{flathyp}{const offset migration}%The amplitude in subroutine {\tt flathyp()}%should be improved when we have time to do so.Forward and backward responses to impulses%of subroutine {\tt flathyp()}are found in Figures~\ref{fig:Cos1} and \ref{fig:Cos0}.\sideplot{Cos1}{width=3.in,height=3.in}{	Migrating impulses on a constant-offset section.%	with subroutine {\tt flathyp()}.	Notice that shallow impulses	(shallow compared to $h$)	appear ellipsoidal	while deep ones appear circular.	}%\newslide\sideplot{Cos0}{width=3.in,height=3.in}{	Forward modeling	from an earth impulse. % with subroutine {\tt flathyp()}.	}%\newslide\parIt is not easy to show that equation (\ref{eqn:dsryh}) can becast in the standard mathematical form of an ellipse, namely, a stretched circle.But the result is a simple one,and an important one for later analysis.Feel free to skip forward over the following verificationof this ancient wisdom.To help reduce algebraic verbosity,define a new  $y$  equal to the old one shifted by  $y_0 $.Also make the definitions\begin{eqnarray}t\,v \ \ \ \ &=&\ \ \ \ 2\ A\  			\label{eqn:mymajor}\\\alpha\ \ \ \ &=&\ \ \ \ z^2 \ \ +\ \  (y\ +\ h)^2   \nonumber\\\beta\ \ \ \ &=&\ \ \ \ z^2 \ \ +\ \  (y\ -\ h)^2   \nonumber\\\alpha\ \ -\ \ \beta\ \ \ \ &=&\ \ \ \ 4\ y\ h  \nonumber\end{eqnarray}With these definitions, (\ref{eqn:dsryh}) becomes\begin{displaymath}2\ A\  \eq \  \sqrt \alpha \ \ +\ \   \sqrt \beta  \end{displaymath}Square to get a new equation with only one square root.\begin{displaymath}4\ A^2 \ \ -\ \ (\alpha\ +\ \beta) \  \eq \ 2\  \sqrt{ \alpha \beta }\end{displaymath}Square again to eliminate the square root.\begin{eqnarray*}16\ A^4 \ \ -\ \ 8\ A^2 \, (\alpha\ +\ \beta) \ \ +\ \ (\alpha\ +\ \beta)^2 \ \ \ \ &=&\ \ \ \ 4\ \alpha\ \beta\\16\ A^4 \ \ -\ \ 8\ A^2 \, (\alpha\ +\ \beta) \ \ +\ \ (\alpha\ -\ \beta)^2 \ \ \ \ &=&\ \ \ \ 0\end{eqnarray*}Introduce definitions of  $\alpha$  and  $\beta$.\begin{displaymath}16\ A^4 \ \ -\ \  8\ A^2 \ [\,2\,z^2 \ +\ 2\,y^2 \ +\  2\,h^2 ] \ \ +\ \ 16\ y^2 \, h^2 \  \eq \ 0 \end{displaymath}Bring  $y$  and  $z$  to the right.\begin{eqnarray}A^4 \ \ -\ \  A^2 \, h^2 \ \ \ \ &=&\ \ \ \ 		\nonumberA^2 \, ( z^2 \ +\  y^2 ) \ \ -\ \  y^2 \, h^2\\A^2 \, ( A^2 \ -\  h^2 ) \ \ \ \ &=&\ \ \ \ A^2 \,  z^2 \ +\   ( A^2 \ -\   h^2 ) \, y^2		\nonumber\\A^2 \ \ \ \ &=&\ \ \ \  {z^2  \over 1 \ -\  {h^2  \over A^2}}\ \ +\ \ y^2							\label{eqn:torick}\end{eqnarray}Finally, recalling all earlier definitions and replacing $y$ by $y-y_0$, weobtain the canonical form of an ellipse with semi-major axis $A$ and semi-minor axis $B$:\begin{equation}{(y\ -\ y_0)^2 \over A^2} \ +\ {z^2 \over B^2} \eq 1 \ \ \ ,\label{eqn:canellipse}\end{equation}where\begin{eqnarray} A &\eq& {v\ t \over 2}    \\ B &\eq& \sqrt{A^2\ -\ h^2}\end{eqnarray}\parFixing $t$, equation (\ref{eqn:canellipse}) is the equation for a circle witha stretched $z$-axis.The above algebra confirms that the``string and tack'' definition of an \bx{ellipse}matches the ``stretched circle'' definition.An \bx{ellipse} in earth model space correspondsto an impulse on a constant-offset section.\section{INTRODUCTION TO DIP}\inputdir{XFig}We can consider a data space to be a superposition of pointsand then analyze the point response,or we can consider data spaceor model space to be a superposition of planesand then do an analysis of planes.Analysis of points is often easier than planes,but planes, particularly local planes,are more like observational data and earth models.\parThe simplest environment for reflection datais a single horizontal reflection interface,which is shown in Figure~\ref{fig:simple}.\plot{simple}{height=2.5in}{	Simplest earth model. 	}%\newslideAs expected, the zero-offset section mimics the earth model.The common-midpoint gather is a hyperbolawhose asymptotes are straight lineswith slopes of the inverse of the velocity  $v_1$.The most basic data processing is called{\em \bx{common-depth-point stack}}or \bx{CDP stack}.In it, all the traces on the common-midpoint (CMP) gatherare time shifted into alignmentand then added together.The result mimics a zero-offset trace.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91精品国产综合久久精品麻豆| 精品一区二区三区欧美| 日韩经典中文字幕一区| 91亚洲男人天堂| 蜜桃av噜噜一区| 99精品久久只有精品| 欧美顶级少妇做爰| 亚洲欧美在线高清| 韩国av一区二区三区在线观看| 一本一道久久a久久精品| 日韩精品中文字幕在线一区| 亚洲黄色小说网站| 成人午夜精品在线| 欧美电视剧免费观看| 亚洲成人精品在线观看| av激情成人网| 国产欧美精品一区二区色综合朱莉| 亚洲成人综合网站| 色先锋久久av资源部| 国产日韩欧美精品综合| 综合在线观看色| 日韩无一区二区| 欧美老女人在线| 91毛片在线观看| 韩国午夜理伦三级不卡影院| 91亚洲精品久久久蜜桃| 国产亚洲精品免费| 麻豆精品蜜桃视频网站| 欧美精品1区2区3区| 亚洲第一主播视频| 欧美性感一区二区三区| 亚洲另类春色国产| 91蜜桃网址入口| 亚洲老司机在线| 91色视频在线| 亚洲色图视频网站| 色婷婷激情综合| 日韩黄色一级片| 欧美日韩久久久| 久久亚洲二区三区| 国产精品欧美一级免费| 狠狠色丁香久久婷婷综| 精品美女一区二区三区| 国产尤物一区二区在线| 国产欧美视频在线观看| 成人毛片视频在线观看| 国产精品网站一区| 91麻豆国产香蕉久久精品| 亚洲欧美日韩精品久久久久| 欧洲精品在线观看| 婷婷中文字幕一区三区| 日韩一区二区精品| 黄色日韩网站视频| 欧美国产综合色视频| 91亚洲大成网污www| 一区二区三区国产豹纹内裤在线| 欧美性淫爽ww久久久久无| 图片区小说区国产精品视频| 日韩视频免费观看高清完整版| 国产精品自拍三区| 亚洲精品第1页| 欧美一三区三区四区免费在线看| 91亚洲永久精品| 色婷婷亚洲婷婷| 国产精品乱码人人做人人爱 | 欧美成人欧美edvon| 久久机这里只有精品| 国产欧美日本一区二区三区| 99国产精品99久久久久久| 亚洲电影欧美电影有声小说| 日韩精品一区二区三区在线| 成人激情黄色小说| 视频在线在亚洲| 亚洲综合丝袜美腿| 日韩区在线观看| av中文字幕在线不卡| 奇米综合一区二区三区精品视频 | 91免费在线视频观看| 亚洲成人高清在线| 欧美夫妻性生活| 国产精品一区二区在线观看不卡| 99国产精品国产精品久久| 日本不卡123| 国产精品日产欧美久久久久| 欧美丰满一区二区免费视频| 成人黄色免费短视频| 亚洲成人av福利| 国产精品卡一卡二| 日韩欧美一级二级| 欧美丝袜第三区| 99久久免费视频.com| 久久97超碰国产精品超碰| 亚洲综合视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 成人精品在线视频观看| 麻豆一区二区在线| 亚洲一级二级三级在线免费观看| 国产夜色精品一区二区av| 日韩免费一区二区| 欧美日韩国产三级| 欧洲国内综合视频| jvid福利写真一区二区三区| 国产在线精品一区二区不卡了 | 国产欧美一区二区三区在线看蜜臀| 欧美三级中文字| 91麻豆精东视频| 91浏览器入口在线观看| 成人晚上爱看视频| 国产一区二区三区免费看 | 成a人片国产精品| 国产黄色精品视频| 国产精品羞羞答答xxdd| 国产在线精品免费av| 久久99国产精品成人| 九九视频精品免费| 久久精品国产**网站演员| 日欧美一区二区| 丝袜诱惑亚洲看片| 日本美女视频一区二区| 午夜精品福利一区二区蜜股av| 亚洲一区二区三区四区在线免费观看| 亚洲婷婷在线视频| 亚洲一区二区在线免费看| 一区二区三区在线观看网站| 玉米视频成人免费看| 亚洲自拍另类综合| 无吗不卡中文字幕| 日本不卡一区二区| 国产自产v一区二区三区c| 国产精品18久久久久| 风流少妇一区二区| 91丝袜国产在线播放| 欧美中文字幕一二三区视频| 欧美日韩免费高清一区色橹橹| 精品视频123区在线观看| 欧美精品tushy高清| 精品国产露脸精彩对白| 国产精品视频看| 中文字幕日本不卡| 婷婷中文字幕综合| 韩国一区二区在线观看| 成人高清免费观看| 欧美在线制服丝袜| 日韩欧美国产系列| 日本一区二区不卡视频| 亚洲欧美激情一区二区| 日韩高清在线电影| 成人丝袜18视频在线观看| 色网站国产精品| 欧美不卡视频一区| 国产精品高潮呻吟久久| 国产一区视频网站| 99久久精品免费看国产免费软件| 日韩一区二区在线播放| 久久久久久日产精品| 亚洲男同1069视频| 日精品一区二区| 国产盗摄精品一区二区三区在线 | 欧美亚洲综合久久| 日韩免费福利电影在线观看| 欧美激情中文字幕| 日本一道高清亚洲日美韩| 成人深夜在线观看| 日韩一区二区精品葵司在线| 国产精品国产馆在线真实露脸| 三级影片在线观看欧美日韩一区二区 | 精品国产乱码久久久久久久久| 国产精品久久久久影院色老大 | 色一区在线观看| 福利一区二区在线观看| 欧美伦理视频网站| 欧美高清在线视频| 伦理电影国产精品| 欧美午夜宅男影院| 日本一区二区三区电影| 日韩精品91亚洲二区在线观看 | 理论片日本一区| 在线观看av不卡| 最新中文字幕一区二区三区| 另类小说色综合网站| 欧美日韩免费一区二区三区| 国产精品色哟哟网站| 国产在线一区二区| 日韩手机在线导航| 亚洲不卡在线观看| 色一情一伦一子一伦一区| 中文乱码免费一区二区 | 亚洲午夜视频在线| 色综合天天综合网国产成人综合天| 久久蜜桃香蕉精品一区二区三区| 视频一区国产视频| 欧美日韩高清不卡| 夜夜精品浪潮av一区二区三区| av日韩在线网站| 亚洲三级视频在线观看| av男人天堂一区| 亚洲色图另类专区| 91在线视频免费91| 亚洲三级电影网站| 色综合久久88色综合天天免费|