亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
\def\CAKEDIR{.}\title{Waves and Fourier sums}\author{Jon Claerbout}\maketitle\label{paper:ft1}\long\def\HideThis#1{}%{\em \today . This chapter is owned by JFC.}\todo{jarring jump from recommending odd FFT, then using even}\sx{Fourier transform!discrete}\parAn important concept in wave imaging is the extrapolationof a wavefield from one depth $z$ to another.Fourier transforms are an essential basic tool.There are many books and chapters of books on the{\em  theory}of Fourier transformation.The first half of this chapter isan introduction to {\em  practice} with Fourier sums.It assumes you already know something of the theoryand takes you through the theory rather quicklyemphasizing practice by examining examples,and by performing two-dimensionalFourier transformation of data and interpreting the result.For a somewhat more theoretical background,I suggest my previous book PVI athttp://sepwww.stanford.edu/sep/prof/.\parThe second half of this chapteruses Fourier transformationto explain the Hankel waveform we observedin chapter~\ref{vela/paper:vela} and chapter~\ref{krch/paper:krch}.Interestingly,it is the Fourier transform of $\sqrt{-i\omega}$,which is half the derivative operator.\section{FOURIER TRANSFORM}We first examine the two ways to visualize polynomial multiplication.The two ways lead us to the most basic principle of Fourier analysisthat\par\boxit{ A product in the Fourier domain	is a convolution in the physical domain}\par\noindentLook what happens to the coefficients when we multiply polynomials.\begin{eqnarray}X(Z)\, B(Z) &\eq & Y(Z) \label{eqn:1-1-5} \\(x_0 + x_1 Z + x_2 Z^2 + \cdots )\, (b_0 + b_1 Z + b_2 Z^2) &\eq &y_0 + y_1 Z + y_2 Z^2 + \cdots  \label{eqn:1-1-6}\end{eqnarray}Identifying coefficients of successive powers of $Z$, we get\begin{eqnarray}y_0 &\eq & x_0 b_0 \nonumber \\y_1 &\eq & x_1 b_0  + x_0 b_1 \nonumber \\y_2 &\eq & x_2 b_0 + x_1 b_1 + x_0 b_2 \label{eqn:1-1-7} \\y_3 &\eq & x_3 b_0 + x_2 b_1 + x_1 b_2 \nonumber \\y_4 &\eq & x_4 b_0 + x_3 b_1 + x_2 b_2 \nonumber \\    &\eq & \cdots\cdots\cdots\cdots\cdots\cdots  \nonumber\end{eqnarray}In matrix form this looks like\begin{equation}\left[ \begin{array}{c}  y_0 \\   y_1 \\   y_2 \\   y_3 \\   y_4 \\   y_5 \\   y_6  \end{array} \right] \eq\left[ \begin{array}{ccc}  x_0 & 0   & 0    \\  x_1 & x_0 & 0    \\  x_2 & x_1 & x_0  \\  x_3 & x_2 & x_1  \\  x_4 & x_3 & x_2  \\  0   & x_4 & x_3  \\  0   & 0   & x_4  \end{array} \right] \; \left[ \begin{array}{c}  b_0 \\   b_1 \\   b_2 \end{array} \right]\label{eqn:contran2}\end{equation}The following equation, called the``convolution equation,''carries the spirit of the group shown in (\ref{eqn:1-1-7})\begin{equation}y_k \eq  \sum_{i = 0} x_{k - i} b_i\label{eqn:conv}\end{equation}\parThe second way to visualize polynomial multiplication is simpler.Above we did not think of $Z$ as a numerical value.Instead we thought of it as ``a unit delay operator''.Now we think of the product $X(Z) B(Z) = Y(Z)$ numerically.For all possible numerical values of $Z$,each value $Y$ is determinedfrom the product of the two numbers $X$ and $B$.Instead of considering all possible numerical valueswe limit ourselves to all values of unit magnitude$Z=e^{i\omega}$ for all real values of $\omega$.This is Fourier analysis, a topic we consider next.\subsection{FT as an invertible matrix}\parA \bx{Fourier sum} may be written\begin{equation}B(\omega) \eq  \sum_t \ b_t \ e^{i\omega t}	  \eq  \sum_t \ b_t \ Z^t\end{equation}where the complex value $Z$is related to the real frequency$\omega$ by $Z=e^{i\omega}$.This Fourier sum is a way of buildinga continuous function of $\omega$from discrete signal values $b_t$ in the time domain.Here we specify both time and frequency domains by a set of points.Begin with an example of a signalthat is nonzero at four successive instants,$( b_0, b_1, b_2, b_3)$.The transform is\begin{equation}B(\omega) \eq  b_0 + b_1 Z + b_2 Z^2 + b_3 Z^3\end{equation}The evaluation of this polynomial can be organized as a matrix times a vector,such as\begin{equation}  \left[ \begin{array}{c}   B_0 \\   B_1 \\   B_2 \\   B_3  \end{array} \right]\eq   \left[ \begin{array}{cccc}   1 & 1 & 1 & 1 \\   1 & W & W^2 & W^3 \\   1  & W^2 & W^4 & W^6 \\   1  & W^3 & W^6 & W^9  \end{array} \right]  \;  \left[ \begin{array}{c}   b_0 \\   b_1 \\   b_2 \\   b_3  \end{array} \right]   \label{eqn:3-3}\end{equation}Observe that the top row of the matrix evaluates the polynomial at $Z=1$,a point where also$\omega=0$.The second row evaluates $B_1=B(Z=W=e^{i\omega_0})$,where $\omega_0$ is some base frequency.The third row evaluates the Fourier transform for $2\omega_0$,and the bottom row for $3\omega_0$.The matrix could have more than four rows for more frequenciesand more columns for more time points.I have made the matrix square in order to show you nexthow we can find the inverse matrix.The size of the matrix in (\ref{eqn:3-3}) is $N=4$.If we choose the base frequency $\omega_0$ and hence $W$ correctly,the inverse matrix will be\begin{equation}  \left[ \begin{array}{c}   b_0 \\   b_1 \\   b_2 \\   b_3  \end{array} \right]\eq   1/N \; \left[ \begin{array}{cccc}   1 & 1 & 1 & 1 \\   1 & 1/W & 1/W^2 & 1/W^3 \\   1  & 1/W^2 & 1/W^4 & 1/W^6 \\   1  & 1/W^3 & 1/W^6 & 1/W^9  \end{array} \right]  \;  \left[ \begin{array}{c}   B_0 \\   B_1 \\   B_2 \\   B_3 \end{array} \right]   \label{eqn:3-5}\end{equation}Multiplying the matrix of(\ref{eqn:3-5}) with that of (\ref{eqn:3-3}),we first see that the diagonals are +1 as desired.To have the off diagonals vanish,we need various sums,such as $1+W  +W^2+W^3$and     $1+W^2+W^4+W^6$, to vanish.Every element ($W^6$, for example,or $1/W^9$) is a unit vector in the complex plane.In order for the sums of the unit vectors to vanish,we must ensure that the vectors pull symmetrically away from the origin.A uniform distribution of directions meets this requirement.In other words, $W$ should be the $N$-th root of unity, i.e.,\begin{equation}W \eq\sqrt[N]{1} \eqe^{2\pi i/N} \label{eqn:3-4}\end{equation}\parThe lowest frequency is zero, corresponding to the top row of(\ref{eqn:3-3}).The next-to-the-lowest frequency we find by setting $W$ in(\ref{eqn:3-4}) to $Z=e^{i\omega_0}$.So $\omega_0=2\pi /N$; andfor (\ref{eqn:3-5}) to be inverse to (\ref{eqn:3-3}),the frequencies required are\begin{equation}\omega_k \eq { (0, 1, 2, \ldots , N- 1) \, 2\pi \over N} \label{eqn:3-2}\end{equation}\subsection{The Nyquist frequency}\inputdir{matrix}The highest frequencyin equation~(\ref{eqn:3-2}),$\omega=2\pi (N-1)/N$,is almost $2\pi$.This frequency is twice as high as the Nyquist frequency $\omega=\pi$.The \bx{Nyquist frequency}is normally thought of as the ``highest possible'' frequency,because $e^{i\pi t}$, for integer $t$,plots as $(\cdots ,1,-1,1,-1,1,-1,\cdots)$.The double Nyquist frequency function,$e^{i2\pi t}$, for integer $t$,plots as $(\cdots ,1,1,1,1,1,\cdots)$.So this frequency above the highest frequency is really zero frequency!We need to recall that $B(\omega)=B(\omega -2\pi )$.Thus, all the frequencies near the upper end of the range equation~(\ref{eqn:3-2})are really small negative frequencies.Negative frequencies on the interval $(-\pi,0)$were moved to interval $(\pi,2\pi)$by the matrix form of Fourier summation.\parA picture of the Fourier transform matrix is shown in Figure \ref{fig:matrix}.Notice the Nyquist frequency is the center rowand center column of each matrix.\plot{matrix}{width=6in, height=6in}{  Two different graphical means of showing the  real and imaginary parts of the Fourier transform  matrix of size $32\times 32$.}%\newslide\subsection{Laying out a mesh}\parIn theoretical work and in programs,the unit delay operator definition $Z=e^{i\omega \Delta t}$is often simplified to $\Delta t = 1$,leaving us with $ Z = e^{i\omega} $.How do we know whether $\omega$is given in radians per second or radians per sample?We may not invoke a cosine or an exponential unlessthe argument has no physical dimensions.So where we see $\omega$ without $\Delta t$,we know it is in units of radians per sample.\parIn practical work,frequency is typically given in cycles/sec or \bx{Hertz}, $f$,rather than radians, $\omega$(where $\omega = 2\pi f$).Here we will now switch to $f$.We will design a computer \bx{mesh} on a physical object(such as a waveform or a function of space).\label{'mesh'}We often take the mesh to begin at $t=0$,and continue till the end $t_{\rm max}$ of the object,so the time range $t_{\rm range} = t_{\rm max}$.Then we decide how many points we want to use.This will be the $N$ used in the discrete Fourier-transform program.Dividing the range by the number gives a mesh interval $\Delta t$.\parNow let us see what this choice implies in the frequency domain.We customarily take the maximum frequency to be the Nyquist,either $f_{\rm max} = .5 /\Delta t$ Hz or$\omega_{\rm max} = \pi /\Delta t$ radians/sec.The frequency range $f_{\rm range}$ goes from $-.5/\Delta t$ to $.5/\Delta t$.In summary:\begin{itemize}\item $\Delta t \eq t_{\rm range} / N \quad$ is time \bx{resolution}.\item $f_{\rm range} \eq 1/\Delta t \eq N /t_{\rm range} \quad$	is frequency range.\item $\Delta f \eq f_{\rm range}/N \eq 1/t_{\rm range} \quad$	is frequency \bx{resolution}.\end{itemize}In principle, we can always increase $N$ to refine the calculation.Notice that increasing $N$ sharpens the time resolution(makes $\Delta t$ smaller)but does not sharpen the frequency resolution$\Delta f$, which remains fixed.Increasing $N$ increases the frequency{\em  range,}but not the frequency{\em  resolution.}\parWhat if we want to increase the frequency resolution?Then we need to choose $t_{\rm range}$ larger than required tocover our object of interest.Thus we either record data over a larger range,or we assert that such measurements would be zero.Three equations summarize the facts:\begin{eqnarray}\Delta t \ f_{\rm range} &=& 1			\\\Delta f \ t_{\rm range} &=& 1			\\\Delta f \ \Delta t        &=& {1 \over N}\label{eqn:dtdf}\end{eqnarray}\par\boxit{Increasing {\em  range} in the time domain increases	{\em  resolution} in the frequency domain and vice versa.	Increasing \bx{resolution} in one domain	does not increase \bx{resolution} in the other.	}\section{INVERTIBLE SLOW FT PROGRAM}\parTypically, signals are real valued.But the programs in this chapter are for complex-valued signals.In order to use these programs,copy the real-valued signal into a complex array,where the signal goes into the real part of the complex numbers;the imaginary parts are then automatically set to zero.\parThere is no universally correct choiceof \bx{scale factor} in Fourier transform:

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧洲精品中文字幕| 蜜臀av亚洲一区中文字幕| 日韩欧美资源站| 日韩av在线发布| 色视频一区二区| 成人av影视在线观看| 国产真实乱偷精品视频免| 免费观看日韩av| 视频在线在亚洲| 日韩av在线免费观看不卡| 午夜欧美视频在线观看| 日韩影院在线观看| 奇米影视7777精品一区二区| 日本欧美加勒比视频| 秋霞午夜鲁丝一区二区老狼| 蜜臀久久99精品久久久画质超高清| 午夜精品福利在线| 青青草视频一区| 久久精品国产**网站演员| 国产美女视频91| 国产a精品视频| 国产精品综合在线视频| 美女视频黄a大片欧美| 日韩制服丝袜先锋影音| 美女一区二区三区| 成人免费va视频| 91精彩视频在线| 欧美一区二区三区色| 337p粉嫩大胆噜噜噜噜噜91av| 国产清纯美女被跳蛋高潮一区二区久久w | 成人毛片在线观看| 色综合av在线| 91精品国产色综合久久ai换脸| 亚洲精品一区二区三区四区高清| 久久久久成人黄色影片| 洋洋av久久久久久久一区| 日韩高清电影一区| 成人午夜在线播放| 69成人精品免费视频| 日本一区二区三级电影在线观看 | 91丝袜美女网| 7777精品久久久大香线蕉| 国产日韩欧美一区二区三区综合| 亚洲色图另类专区| 激情伊人五月天久久综合| 色天天综合久久久久综合片| 日韩一本二本av| 亚洲欧美色一区| 韩国精品主播一区二区在线观看| 色婷婷久久久亚洲一区二区三区 | 国产精品1区2区| 欧美系列日韩一区| 久久精品视频一区| 奇米色一区二区三区四区| www.亚洲精品| 2021中文字幕一区亚洲| 亚洲成av人片在线| 99re成人在线| 国产偷国产偷精品高清尤物 | 精品国产凹凸成av人网站| 一区二区在线观看视频在线观看| 国产激情偷乱视频一区二区三区| 欧美日韩不卡视频| 中文字幕视频一区| 丁香五精品蜜臀久久久久99网站 | 成人黄色av电影| 2021中文字幕一区亚洲| 日本在线不卡一区| 欧美日韩欧美一区二区| 中文字幕一区av| 国产一区二区三区日韩| 精品欧美一区二区久久| 午夜精品久久久久久久蜜桃app| 一本一本大道香蕉久在线精品| 国产人成亚洲第一网站在线播放| 麻豆精品视频在线观看视频| 欧美日韩国产免费一区二区| 亚洲自拍偷拍欧美| 欧洲一区在线观看| 亚洲午夜av在线| 欧美亚洲综合色| 亚洲1区2区3区4区| 欧美色综合天天久久综合精品| 一区二区视频在线| 91在线观看成人| 日本一区二区三区免费乱视频| 国产成人精品免费在线| 欧美国产精品久久| voyeur盗摄精品| 亚洲女子a中天字幕| 日本久久精品电影| 无吗不卡中文字幕| 日韩欧美成人一区| 国产高清在线精品| 中文字幕在线不卡一区| 在线一区二区三区四区五区 | 免费久久99精品国产| 欧美一区三区四区| 国产在线一区二区| 中文字幕第一区第二区| 91美女在线观看| 亚洲一区av在线| 欧美本精品男人aⅴ天堂| 国产成人综合精品三级| 亚洲人成影院在线观看| 精品视频一区二区三区免费| 免费人成在线不卡| 国产欧美日韩亚州综合| 91美女在线观看| 麻豆久久久久久久| 国产精品你懂的在线欣赏| 在线观看亚洲专区| 免费看黄色91| 中文字幕制服丝袜成人av| 欧美丝袜丝交足nylons图片| 久久精品72免费观看| 中文字幕第一区二区| 69堂国产成人免费视频| 成人晚上爱看视频| 日韩电影在线看| 国产精品另类一区| 日韩一区二区三区视频在线观看 | 亚洲欧美偷拍卡通变态| 欧美一区二区三区在线电影| 成人精品视频一区二区三区尤物| 午夜电影网一区| 国产精品家庭影院| 精品欧美一区二区久久| 欧美在线一区二区三区| 国产一区二区三区免费看| 丝袜亚洲另类欧美| 亚洲欧美日韩中文播放 | 在线观看欧美日本| 国产成人综合在线观看| 免费日本视频一区| 亚洲一区二区三区视频在线播放| 国产亚洲精品bt天堂精选| 69堂亚洲精品首页| 欧美性生活大片视频| 99国产精品久| 成人免费av网站| 国产麻豆精品95视频| 久久精品国产在热久久| 婷婷六月综合网| 一级精品视频在线观看宜春院 | 色婷婷av久久久久久久| 成人av电影在线观看| 国产精品夜夜嗨| 九九九精品视频| 奇米888四色在线精品| 日韩福利视频网| 日韩精品乱码免费| 日韩精品三区四区| 男男gaygay亚洲| 日本女优在线视频一区二区| 亚洲国产成人91porn| 亚洲国产成人精品视频| 亚洲va欧美va人人爽| 夜夜操天天操亚洲| 亚洲一区在线观看网站| 亚洲一卡二卡三卡四卡无卡久久 | 全国精品久久少妇| 日本vs亚洲vs韩国一区三区 | 成人免费看视频| 成人激情开心网| eeuss鲁片一区二区三区在线看| 成人av网址在线观看| av电影在线不卡| 菠萝蜜视频在线观看一区| 91影视在线播放| 欧美在线免费观看亚洲| 777色狠狠一区二区三区| 欧美一级理论片| 久久久久久久综合色一本| 日本一二三不卡| 亚洲三级免费电影| 天涯成人国产亚洲精品一区av| 日韩**一区毛片| 精品一区在线看| 不卡的av电影| 欧美日韩精品三区| 久久综合久久99| 亚洲精品成人少妇| 奇米色一区二区| 成人高清av在线| 欧美色综合天天久久综合精品| 日韩欧美高清一区| 一色桃子久久精品亚洲| 日韩精品一级中文字幕精品视频免费观看 | 午夜久久久久久久久久一区二区| 日本中文字幕一区二区有限公司| 国产一区二区主播在线| 91在线码无精品| 91精选在线观看| 国产精品久久久久aaaa樱花| 亚洲高清在线视频| 成人性生交大片免费| 制服丝袜中文字幕一区| 国产精品护士白丝一区av| 奇米色777欧美一区二区|