亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? paper.tex

?? 國(guó)外免費(fèi)地震資料處理軟件包
?? TEX
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
\def\CAKEDIR{.}\title{Waves and Fourier sums}\author{Jon Claerbout}\maketitle\label{paper:ft1}\long\def\HideThis#1{}%{\em \today . This chapter is owned by JFC.}\todo{jarring jump from recommending odd FFT, then using even}\sx{Fourier transform!discrete}\parAn important concept in wave imaging is the extrapolationof a wavefield from one depth $z$ to another.Fourier transforms are an essential basic tool.There are many books and chapters of books on the{\em  theory}of Fourier transformation.The first half of this chapter isan introduction to {\em  practice} with Fourier sums.It assumes you already know something of the theoryand takes you through the theory rather quicklyemphasizing practice by examining examples,and by performing two-dimensionalFourier transformation of data and interpreting the result.For a somewhat more theoretical background,I suggest my previous book PVI athttp://sepwww.stanford.edu/sep/prof/.\parThe second half of this chapteruses Fourier transformationto explain the Hankel waveform we observedin chapter~\ref{vela/paper:vela} and chapter~\ref{krch/paper:krch}.Interestingly,it is the Fourier transform of $\sqrt{-i\omega}$,which is half the derivative operator.\section{FOURIER TRANSFORM}We first examine the two ways to visualize polynomial multiplication.The two ways lead us to the most basic principle of Fourier analysisthat\par\boxit{ A product in the Fourier domain	is a convolution in the physical domain}\par\noindentLook what happens to the coefficients when we multiply polynomials.\begin{eqnarray}X(Z)\, B(Z) &\eq & Y(Z) \label{eqn:1-1-5} \\(x_0 + x_1 Z + x_2 Z^2 + \cdots )\, (b_0 + b_1 Z + b_2 Z^2) &\eq &y_0 + y_1 Z + y_2 Z^2 + \cdots  \label{eqn:1-1-6}\end{eqnarray}Identifying coefficients of successive powers of $Z$, we get\begin{eqnarray}y_0 &\eq & x_0 b_0 \nonumber \\y_1 &\eq & x_1 b_0  + x_0 b_1 \nonumber \\y_2 &\eq & x_2 b_0 + x_1 b_1 + x_0 b_2 \label{eqn:1-1-7} \\y_3 &\eq & x_3 b_0 + x_2 b_1 + x_1 b_2 \nonumber \\y_4 &\eq & x_4 b_0 + x_3 b_1 + x_2 b_2 \nonumber \\    &\eq & \cdots\cdots\cdots\cdots\cdots\cdots  \nonumber\end{eqnarray}In matrix form this looks like\begin{equation}\left[ \begin{array}{c}  y_0 \\   y_1 \\   y_2 \\   y_3 \\   y_4 \\   y_5 \\   y_6  \end{array} \right] \eq\left[ \begin{array}{ccc}  x_0 & 0   & 0    \\  x_1 & x_0 & 0    \\  x_2 & x_1 & x_0  \\  x_3 & x_2 & x_1  \\  x_4 & x_3 & x_2  \\  0   & x_4 & x_3  \\  0   & 0   & x_4  \end{array} \right] \; \left[ \begin{array}{c}  b_0 \\   b_1 \\   b_2 \end{array} \right]\label{eqn:contran2}\end{equation}The following equation, called the``convolution equation,''carries the spirit of the group shown in (\ref{eqn:1-1-7})\begin{equation}y_k \eq  \sum_{i = 0} x_{k - i} b_i\label{eqn:conv}\end{equation}\parThe second way to visualize polynomial multiplication is simpler.Above we did not think of $Z$ as a numerical value.Instead we thought of it as ``a unit delay operator''.Now we think of the product $X(Z) B(Z) = Y(Z)$ numerically.For all possible numerical values of $Z$,each value $Y$ is determinedfrom the product of the two numbers $X$ and $B$.Instead of considering all possible numerical valueswe limit ourselves to all values of unit magnitude$Z=e^{i\omega}$ for all real values of $\omega$.This is Fourier analysis, a topic we consider next.\subsection{FT as an invertible matrix}\parA \bx{Fourier sum} may be written\begin{equation}B(\omega) \eq  \sum_t \ b_t \ e^{i\omega t}	  \eq  \sum_t \ b_t \ Z^t\end{equation}where the complex value $Z$is related to the real frequency$\omega$ by $Z=e^{i\omega}$.This Fourier sum is a way of buildinga continuous function of $\omega$from discrete signal values $b_t$ in the time domain.Here we specify both time and frequency domains by a set of points.Begin with an example of a signalthat is nonzero at four successive instants,$( b_0, b_1, b_2, b_3)$.The transform is\begin{equation}B(\omega) \eq  b_0 + b_1 Z + b_2 Z^2 + b_3 Z^3\end{equation}The evaluation of this polynomial can be organized as a matrix times a vector,such as\begin{equation}  \left[ \begin{array}{c}   B_0 \\   B_1 \\   B_2 \\   B_3  \end{array} \right]\eq   \left[ \begin{array}{cccc}   1 & 1 & 1 & 1 \\   1 & W & W^2 & W^3 \\   1  & W^2 & W^4 & W^6 \\   1  & W^3 & W^6 & W^9  \end{array} \right]  \;  \left[ \begin{array}{c}   b_0 \\   b_1 \\   b_2 \\   b_3  \end{array} \right]   \label{eqn:3-3}\end{equation}Observe that the top row of the matrix evaluates the polynomial at $Z=1$,a point where also$\omega=0$.The second row evaluates $B_1=B(Z=W=e^{i\omega_0})$,where $\omega_0$ is some base frequency.The third row evaluates the Fourier transform for $2\omega_0$,and the bottom row for $3\omega_0$.The matrix could have more than four rows for more frequenciesand more columns for more time points.I have made the matrix square in order to show you nexthow we can find the inverse matrix.The size of the matrix in (\ref{eqn:3-3}) is $N=4$.If we choose the base frequency $\omega_0$ and hence $W$ correctly,the inverse matrix will be\begin{equation}  \left[ \begin{array}{c}   b_0 \\   b_1 \\   b_2 \\   b_3  \end{array} \right]\eq   1/N \; \left[ \begin{array}{cccc}   1 & 1 & 1 & 1 \\   1 & 1/W & 1/W^2 & 1/W^3 \\   1  & 1/W^2 & 1/W^4 & 1/W^6 \\   1  & 1/W^3 & 1/W^6 & 1/W^9  \end{array} \right]  \;  \left[ \begin{array}{c}   B_0 \\   B_1 \\   B_2 \\   B_3 \end{array} \right]   \label{eqn:3-5}\end{equation}Multiplying the matrix of(\ref{eqn:3-5}) with that of (\ref{eqn:3-3}),we first see that the diagonals are +1 as desired.To have the off diagonals vanish,we need various sums,such as $1+W  +W^2+W^3$and     $1+W^2+W^4+W^6$, to vanish.Every element ($W^6$, for example,or $1/W^9$) is a unit vector in the complex plane.In order for the sums of the unit vectors to vanish,we must ensure that the vectors pull symmetrically away from the origin.A uniform distribution of directions meets this requirement.In other words, $W$ should be the $N$-th root of unity, i.e.,\begin{equation}W \eq\sqrt[N]{1} \eqe^{2\pi i/N} \label{eqn:3-4}\end{equation}\parThe lowest frequency is zero, corresponding to the top row of(\ref{eqn:3-3}).The next-to-the-lowest frequency we find by setting $W$ in(\ref{eqn:3-4}) to $Z=e^{i\omega_0}$.So $\omega_0=2\pi /N$; andfor (\ref{eqn:3-5}) to be inverse to (\ref{eqn:3-3}),the frequencies required are\begin{equation}\omega_k \eq { (0, 1, 2, \ldots , N- 1) \, 2\pi \over N} \label{eqn:3-2}\end{equation}\subsection{The Nyquist frequency}\inputdir{matrix}The highest frequencyin equation~(\ref{eqn:3-2}),$\omega=2\pi (N-1)/N$,is almost $2\pi$.This frequency is twice as high as the Nyquist frequency $\omega=\pi$.The \bx{Nyquist frequency}is normally thought of as the ``highest possible'' frequency,because $e^{i\pi t}$, for integer $t$,plots as $(\cdots ,1,-1,1,-1,1,-1,\cdots)$.The double Nyquist frequency function,$e^{i2\pi t}$, for integer $t$,plots as $(\cdots ,1,1,1,1,1,\cdots)$.So this frequency above the highest frequency is really zero frequency!We need to recall that $B(\omega)=B(\omega -2\pi )$.Thus, all the frequencies near the upper end of the range equation~(\ref{eqn:3-2})are really small negative frequencies.Negative frequencies on the interval $(-\pi,0)$were moved to interval $(\pi,2\pi)$by the matrix form of Fourier summation.\parA picture of the Fourier transform matrix is shown in Figure \ref{fig:matrix}.Notice the Nyquist frequency is the center rowand center column of each matrix.\plot{matrix}{width=6in, height=6in}{  Two different graphical means of showing the  real and imaginary parts of the Fourier transform  matrix of size $32\times 32$.}%\newslide\subsection{Laying out a mesh}\parIn theoretical work and in programs,the unit delay operator definition $Z=e^{i\omega \Delta t}$is often simplified to $\Delta t = 1$,leaving us with $ Z = e^{i\omega} $.How do we know whether $\omega$is given in radians per second or radians per sample?We may not invoke a cosine or an exponential unlessthe argument has no physical dimensions.So where we see $\omega$ without $\Delta t$,we know it is in units of radians per sample.\parIn practical work,frequency is typically given in cycles/sec or \bx{Hertz}, $f$,rather than radians, $\omega$(where $\omega = 2\pi f$).Here we will now switch to $f$.We will design a computer \bx{mesh} on a physical object(such as a waveform or a function of space).\label{'mesh'}We often take the mesh to begin at $t=0$,and continue till the end $t_{\rm max}$ of the object,so the time range $t_{\rm range} = t_{\rm max}$.Then we decide how many points we want to use.This will be the $N$ used in the discrete Fourier-transform program.Dividing the range by the number gives a mesh interval $\Delta t$.\parNow let us see what this choice implies in the frequency domain.We customarily take the maximum frequency to be the Nyquist,either $f_{\rm max} = .5 /\Delta t$ Hz or$\omega_{\rm max} = \pi /\Delta t$ radians/sec.The frequency range $f_{\rm range}$ goes from $-.5/\Delta t$ to $.5/\Delta t$.In summary:\begin{itemize}\item $\Delta t \eq t_{\rm range} / N \quad$ is time \bx{resolution}.\item $f_{\rm range} \eq 1/\Delta t \eq N /t_{\rm range} \quad$	is frequency range.\item $\Delta f \eq f_{\rm range}/N \eq 1/t_{\rm range} \quad$	is frequency \bx{resolution}.\end{itemize}In principle, we can always increase $N$ to refine the calculation.Notice that increasing $N$ sharpens the time resolution(makes $\Delta t$ smaller)but does not sharpen the frequency resolution$\Delta f$, which remains fixed.Increasing $N$ increases the frequency{\em  range,}but not the frequency{\em  resolution.}\parWhat if we want to increase the frequency resolution?Then we need to choose $t_{\rm range}$ larger than required tocover our object of interest.Thus we either record data over a larger range,or we assert that such measurements would be zero.Three equations summarize the facts:\begin{eqnarray}\Delta t \ f_{\rm range} &=& 1			\\\Delta f \ t_{\rm range} &=& 1			\\\Delta f \ \Delta t        &=& {1 \over N}\label{eqn:dtdf}\end{eqnarray}\par\boxit{Increasing {\em  range} in the time domain increases	{\em  resolution} in the frequency domain and vice versa.	Increasing \bx{resolution} in one domain	does not increase \bx{resolution} in the other.	}\section{INVERTIBLE SLOW FT PROGRAM}\parTypically, signals are real valued.But the programs in this chapter are for complex-valued signals.In order to use these programs,copy the real-valued signal into a complex array,where the signal goes into the real part of the complex numbers;the imaginary parts are then automatically set to zero.\parThere is no universally correct choiceof \bx{scale factor} in Fourier transform:

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品对白一区国产伦| 久久久亚洲综合| 激情综合网最新| 亚洲男人电影天堂| 亚洲国产日韩综合久久精品| 精品久久久久香蕉网| 91日韩精品一区| 国产呦萝稀缺另类资源| 香蕉av福利精品导航| 国产精品久久久久影院色老大| 欧美精品九九99久久| 91色在线porny| 成人午夜免费av| 黄页网站大全一区二区| 午夜久久久影院| 一区二区三区资源| 欧美经典一区二区| 精品久久久久香蕉网| 欧美浪妇xxxx高跟鞋交| 色老综合老女人久久久| 波波电影院一区二区三区| 激情国产一区二区| 美女视频黄 久久| 天堂在线亚洲视频| 亚洲国产视频一区二区| 亚洲免费在线视频一区 二区| 欧美激情一区二区三区全黄| 精品av综合导航| 欧美va亚洲va香蕉在线 | 国产精品乱子久久久久| 日韩免费性生活视频播放| 欧美欧美欧美欧美| 欧美喷水一区二区| 欧美日本在线观看| 欧美色电影在线| 欧美在线观看一区| 欧美亚洲综合网| 欧美系列在线观看| 欧美日韩国产中文| 91精品国产一区二区三区蜜臀| 欧美探花视频资源| 欧美日韩mp4| 91精品在线免费观看| 欧美一区二区三区免费| 91精品在线麻豆| 欧美tickling网站挠脚心| 日韩欧美激情四射| 精品国产乱码久久久久久久| 亚洲精品在线观看网站| 国产网红主播福利一区二区| 国产精品美女久久久久高潮| 亚洲欧洲国产日韩| 亚洲综合视频网| 丝袜美腿亚洲色图| 久久99深爱久久99精品| 国产成人精品免费在线| 成人激情文学综合网| 91免费国产在线| 欧美三级韩国三级日本三斤| 欧美一区二区三区在线电影| xnxx国产精品| 国产精品黄色在线观看| 亚洲一级电影视频| 美女脱光内衣内裤视频久久网站| 国产一区999| caoporen国产精品视频| 欧美日韩一本到| 日韩午夜中文字幕| 国产精品色婷婷| 亚洲一区av在线| 毛片基地黄久久久久久天堂| 国产精品77777竹菊影视小说| 99免费精品在线| 欧美精品在线观看一区二区| 久久天堂av综合合色蜜桃网| 亚洲人成网站影音先锋播放| 日本少妇一区二区| 国产成人高清在线| 欧美日韩中文一区| 国产亚洲欧美中文| 亚洲午夜在线电影| 国产精品一二三| 欧美亚洲一区二区三区四区| 久久午夜色播影院免费高清| 一区二区三区欧美日韩| 狠狠色伊人亚洲综合成人| 91首页免费视频| 亚洲精品在线观看视频| 亚洲国产中文字幕在线视频综合| 精品在线亚洲视频| 91福利视频久久久久| 久久婷婷一区二区三区| 亚洲大片精品永久免费| 成+人+亚洲+综合天堂| 7777精品伊人久久久大香线蕉的| 中文欧美字幕免费| 看片的网站亚洲| 欧美伊人久久大香线蕉综合69| 久久综合九色欧美综合狠狠| 亚洲愉拍自拍另类高清精品| 成人性生交大片免费看中文网站| 91精品啪在线观看国产60岁| 亚洲欧美怡红院| 国产精品一区二区在线观看不卡| 欧美视频日韩视频| 国产精品三级视频| 美女脱光内衣内裤视频久久网站 | 亚洲丝袜制服诱惑| 精品一区二区在线看| 欧美日韩一二区| 亚洲色图在线看| 国产成人av影院| 欧美精品一区二区久久婷婷 | 国产成人精品免费看| 欧美一激情一区二区三区| 亚洲最新在线观看| 99国产精品久久久久久久久久| 精品国产免费久久| 美女性感视频久久| 91精品国产aⅴ一区二区| 亚洲精品国产品国语在线app| 成人av在线观| 国产精品无遮挡| 国产精品白丝jk白祙喷水网站| 日韩欧美国产一区在线观看| 性久久久久久久| 欧美日韩国产综合草草| 亚洲一区二区视频| 日本久久电影网| 亚洲精品成人天堂一二三| 91视频xxxx| 亚洲免费三区一区二区| 99精品1区2区| 综合在线观看色| 91麻豆福利精品推荐| 亚洲欧美一区二区三区久本道91| 9色porny自拍视频一区二区| 国产精品久久久久久亚洲毛片 | 亚洲高清免费观看| 欧美日韩一区视频| 一级特黄大欧美久久久| 在线精品视频免费观看| 亚洲一区二区三区在线| 欧美情侣在线播放| 日韩福利视频网| 欧美第一区第二区| 国内外成人在线| 日本一区二区综合亚洲| 99精品欧美一区| 亚洲成人一区在线| 91精品国产aⅴ一区二区| 激情都市一区二区| 中文字幕第一区二区| 色一情一乱一乱一91av| 婷婷成人激情在线网| 91精品国产综合久久精品麻豆| 极品少妇xxxx偷拍精品少妇| 久久精品人人做| 91小宝寻花一区二区三区| 亚洲国产精品一区二区www| 欧美一区二区三区在线观看| 国产美女一区二区| 成人欧美一区二区三区黑人麻豆| 91成人在线免费观看| 天使萌一区二区三区免费观看| 欧美大度的电影原声| 成年人午夜久久久| 午夜久久久影院| 国产亚洲欧洲一区高清在线观看| 91色|porny| 麻豆国产一区二区| 国产精品白丝在线| 777奇米成人网| 成人影视亚洲图片在线| 亚洲第一福利一区| 国产欧美一区二区在线| 欧美性极品少妇| 国产一区二区在线影院| 一区二区三区不卡在线观看| 日韩免费视频线观看| 91年精品国产| 国内精品第一页| 亚洲制服丝袜av| 久久天堂av综合合色蜜桃网| 欧美在线看片a免费观看| 国产一区二区中文字幕| 亚洲午夜激情网页| 国产亚洲短视频| 3d成人h动漫网站入口| 成年人网站91| 国产自产视频一区二区三区| 一区av在线播放| 国产精品视频一二三| 日韩一区二区三区观看| 一本大道综合伊人精品热热| 国产美女精品一区二区三区| 婷婷亚洲久悠悠色悠在线播放| 国产精品午夜免费| 精品999在线播放| 91精品久久久久久蜜臀|