亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
choice of scale is a matter of convenience.Equations~(\ref{eqn:3-3}) and (\ref{eqn:3-5}) mimic the $Z$-transform,so their scaling factors areconvenient for the convolution theorem---thata product in the frequency domain is a convolution in the time domain.Obviously, the scaling factors ofequations~(\ref{eqn:3-3}) and (\ref{eqn:3-5})will need to be interchanged for thecomplementary theorem that a convolution in the frequency domainis a product in the time domain.I like to use a scale factor that keeps the sums of squaresthe same in the time domain as in the frequency domain.Since I almost never need the scale factor,it simplifies life to omit it from the subroutine argument list.\begin{comment}When a scaling program is desired,we can use a simple one like \texttt{scale()} \vpageref{/prog:scale}.Complex-valued data can be scaled with {\tt scale()}merely by doubling the value of {\tt n}.\progdex{scale}{scale an array}\subsection{The simple FT code}Subroutine \texttt{simpleft()} \vpageref{/prog:simpleft} exhibits featuresfound in many physics and engineering programs.For example, the time-domain signal (which is denoted ``{\tt tt()}"),has {\tt nt} values subscripted, from {\tt tt(1)} to {\tt tt(nt)}.The first value of this signal {\tt tt(1)} is locatedin real physical time at {\tt t0}.The time interval between values is {\tt dt}.The value of {\tt tt(it)} is at time {\tt t0+(it-1)*dt}.We do not use ``{\tt if}'' as a pointer on the frequency axisbecause {\tt if} is a keyword in most programming languages.Instead, we count along the frequency axis with a variable named {\tt ie}.%\progdex{simpleft}{slow FT}%\newslideThe total frequency band is$2\pi$ radians per sample unitor $1/\Delta t$ Hz.Dividing the total interval by the number of points {\tt nf} gives $\Delta f$.We could choose the frequencies to run from 0 to $2\pi$ radians/sample.That would work well for many applications,but it would be a nuisance for applications such as differentiationin the frequency domain, which require multiplication by $-i\omega$including the \bxbx{negative frequencies}{negative frequency}as well as the positive.So it seems more natural to begin at the most negative frequencyand step forward to the most positive frequency.\end{comment}\section{CORRELATION AND SPECTRA}The spectrum of a signal is a positive function of frequencythat says how much of each tone is present.The Fourier transform of a spectrum yields an interesting functioncalled an ``\bx{autocorrelation},''which measures the similarity of a signal to itself shifted.\subsection{Spectra in terms of Z-transforms}Let us look at spectra in terms of $Z$-transforms.Let a \bx{spectrum} be denoted $S(\omega)$, where\begin{equation}S(\omega) \eq |B(\omega)|^2 \eq \overline{B(\omega)}B(\omega)\label{eqn:1-5-3}\end{equation}Expressing this in terms of a three-point $Z$-transform, we have\begin{eqnarray}S(\omega) & = & (\bar{b}_0+\bar{b}_1 e^{-i\omega} + 		\bar{b}_2 e^{-i2\omega})		(b_0 + b_1e^{i\omega} +b_2 e^{i2\omega})							\\S(Z) & = & \left(\bar{b}_0 +\frac{\bar{b}_1}{Z} +		\frac{\bar{b}_2}{Z^2} \right)		(b_0 + b_1Z + b_2Z^2 )			\\S(Z) & = & \overline{B} \left(\frac{1}{Z}\right) B(Z)\end{eqnarray}It is interesting to multiply outthe polynomial $\bar{B}(1/Z)$ with $B(Z)$ in orderto examine the coefficients of $S(Z)$:\begin{eqnarray}S(Z) &=& \frac{\bar{b}_2b_0}{Z^2}  + 	\frac{(\bar{b}_1b_0 + \bar{b}_2b_1)}{Z} +	(\bar{b}_0b_0 + \bar{b}_1b_1 + \bar{b}_2 b_2)    + (\bar{b}_0 b_1 + \bar{b}_1b_2)Z + \bar{b}_0 b_2 Z^2 \nonumber \\S(Z) &=& \frac{s_{-2}}{Z^2} + \frac{s_{-1}}{Z} + s_0 + s_1Z + s_2 Z^2\label{eqn:1-5-8}\end{eqnarray}The coefficient $s_k$ of $Z^k$ is given by\begin{equation}s_k \eq \sum_{i} \bar{b}_i b_{i+k}\label{eqn:1-5-9}\end{equation}Equation (\ref{eqn:1-5-9}) is the\bx{autocorrelation} formula.The autocorrelationvalue $s_k$ at lag $10$ is $s_{10}$.It is a measure of the similarity of $b_i$with itself shifted $10$ units in time.In the mostfrequently occurring case, $b_i$ is real; then, by inspection of (\ref{eqn:1-5-9}),we see that the autocorrelation coefficients are real,and $s_k=s_{-k}$.\parSpecializing to a real time series gives\begin{eqnarray}S(Z) & = & s_0 + s_1\left(Z+\frac{1}{Z}     \right) +		 s_2\left(Z^2 +\frac{1}{Z^2}\right) 		\\S(Z(\omega )) & = & s_0 + s_1(e^{i\omega} + e^{-i\omega}) +		s_2(e^{i2\omega} + e^{-i2\omega})		\\S(\omega ) & = & s_0 + 2s_1\cos \omega + 2s_2 \cos 2\omega	\\S(\omega ) & = & \sum_{k} s_k \cos k\omega						\label{eqn:1-5-13} \\S(\omega ) & = & \mbox{cosine transform of }\;\; s_k\label{eqn:1-5-14}\end{eqnarray}This proves a classic theorem that for real-valued signalscan be simply stated as follows:\par\boxit{ For any real signal, the cosine transform of the \bx{autocorrelation}	equals the magnitude squared of the Fourier transform.	}\subsection{Two ways to compute a spectrum}There are two computationally distinct methods by which we cancompute a spectrum: (1) compute all the $s_k$ coefficientsfrom (\ref{eqn:1-5-9}) andthen form the cosine sum (\ref{eqn:1-5-13}) for each $\omega$; andalternately, (2) evaluate $B(Z)$ for some value of Z on the unit circle,and multiply the resulting number by its complex conjugate.Repeat for many values of $Z$ on the unit circle.When there are more than about twenty lags,method (2) is cheaper, becausethe fast Fourier transform (coming up soon) can be used.\subsection{Common signals}\inputdir{autocor}Figure~\ref{fig:autocor} shows some common signals and their\bx{autocorrelation}s.Figure~\ref{fig:spectra} shows the cosine transforms ofthe autocorrelations.Cosine transform takes us from time to frequency and it also takesus from frequency to time.Thus, transform pairs in Figure~\ref{fig:spectra}are sometimes more comprehensibleif you interchange time and frequency.The various signals are given names in the figures,and a description of each follows:\plot{autocor}{width=6in}{  Common signals and one side of their autocorrelations.}% \newslide\plot{spectra}{width=6in}{  Autocorrelations and their cosine transforms,  i.e.,~the (energy) spectra of the common signals.}%\newslide\begin{description}\item [cos]The theoretical spectrum of a sinusoid is an impulse,but the sinusoid was truncated (multiplied by a rectangle function).The autocorrelation is a sinusoid under a triangle,and its spectrum is a broadened impulse(which can be shown to be a narrow sinc-squared function).\item [sinc]The \bx{sinc} function is $\sin(\omega_0 t)/(\omega_0 t)$.Its autocorrelation is another sinc function, and its spectrumis a rectangle function.Here the rectangle is  corrupted slightly by``\bx{Gibbs sidelobes},''which result from the time truncation of the original sinc.\item [wide box]A wide\bx{rectangle function}has a wide triangle function foran autocorrelation and a narrow sinc-squared spectrum.\item [narrow box]A narrow rectangle has a wide sinc-squared spectrum.\item [twin] Two pulses.\item [2 boxes]Two separated narrow boxes have the spectrum of one of them,but this spectrum is modulated (multiplied) by a sinusoidal functionof frequency, where the modulation frequency measures thetime separation of the narrow boxes.(An oscillation seen in the frequency domainis sometimes called a ``\bx{quefrency}.'')\item [comb]Fine-toothed-\bx{comb}functions are like rectangle functions with a lower Nyquist frequency.Coarse-toothed-comb functions have a spectrum which is a fine-toothed comb.\item [exponential]The autocorrelation of a transient \bx{exponential} functionis a \bx{double-sided exponential} function.\sx{exponential ! double-sided}The spectrum (energy) is a Cauchy function, $1/(\omega^2+\omega_0^2)$.The curious thing about the\bx{Cauchy function}is that the amplitude spectrumdiminishes inversely with frequency to the {\em  first} power;hence, over an infinite frequency axis, the function has infinite integral.The sharp edge at the onset of the transient exponentialhas much high-frequency energy.\item [Gauss]The autocorrelation of a \bx{Gaussian}function is another Gaussian,and the spectrum is also a Gaussian.\item [random]\bxbx{Random}{random}numbers have an autocorrelation that is an impulsesurrounded by some short grass.The spectrum is positive random numbers.\item [smoothed random]Smoothed random numbers are much the same as random numbers, but their spectral bandwidth is limited.\end{description}\section{SETTING UP THE FAST FOURIER TRANSFORM }Typically we Fourier transform seismograms about a thousand points long.Under these conditions another Fourier summation methodworks about a hundred times faster than those already given.Unfortunately, the faster Fourier transform programis not so transparently clear as the programs given earlier.Also, it is slightly less flexible.The speedup is so overwhelming, however,that the fast program is always used in routine work.\parFlexibility may be lost because the basic fast programworks with complex-valued signals,so we ordinarily convert our real signals to complex ones(by adding a zero imaginary part).More flexibility is lost because typical fast FT programs requirethe data length to be an integral power of 2.Thus geophysical datasets oftenhave zeros appended (a process called ``\bx{zero pad}ding")until the data length is a power of 2.From time to time I notice clumsy computer code written to deducea number that is a power of 2 and is larger than thelength of a dataset.An answer is found by rounding up the logarithm to base 2.%The more obvious and the quicker way to get the desired value,%however, is%with the simple Fortran function {\tt pad2()}.%%\progdex{pad2}{round up to power of two}\parHow fast is the fast Fourier transform method?The answer depends on the size of the data.The matrix times vector operation in~(\ref{eqn:3-3})requires $N^2$ multiplications and additions.That determines the speed of the slow transform.For the fast method the number of adds and multipliesis proportional to $N \,\log_2 N$.Since $2^{10}=1024$, the speed ratio is typically 1024/10 or about 100.In reality, the fast method is not quite that fast,depending on certain details of overhead and implementation.\par\begin{comment}Below is {\tt ftu()}, a version of the \bx{fast Fourier transform} program.\sx{Fourier transform!fast}There are many versions of the program---I have chosenthis one for its simplicity.Considering the complexity of the task,it is remarkable that no auxiliary memory vectors are required;indeed, the output vector lies on top of the input vector.To run this program, your first step might be to copyyour real-valued signal into a complex-valued array.Then append enough zeros to fill in the remaining space.%\progdex{ftu}{unitary FT}\parThe following two lines serve to Fourier transforma vector of 1024 complex-valued points,and then to \bx{inverse Fourier transform} them back to the original data:\sx{Fourier transform!inverse}\begin{verbatim}    call ftu(  1., 1024, cx)    call ftu( -1., 1024, cx) \end{verbatim}\par\end{comment}A reference given at the end of this chaptercontains many %other versions of the FFT program.One version transforms real-valued signals to complex-valuedfrequency functions in the interval $0 \le \omega < \pi$.Others that do not transform data on top of itselfmay be faster with specialized computer architectures.\subsection{Shifted spectrum}Subroutine \texttt{simpleft()} \vpageref{/prog:simpleft}sets things up in a convenient manner:The frequency range runs from minus Nyquistup to (but not including) plus Nyquist.Thus there is no problem with the many (but not all)user programs that have trouble with aliased frequencies.Subroutine \texttt{ftu()} \vpageref{/prog:ftu}, however has a frequency rangefrom zero to double the Nyquist.Let us therefore define a friendlier ``front end'' to {\tt ftu()}which looks more like {\tt simpleft()}.\parRecall that a time shift of $t_0$ can be implemented in the Fourier domain by multiplication by$e^{-i\omega t_0}$.Likewise, in the Fourier domain,the frequency interval, % used by subroutine~\texttt{ftu()} \vpageref{/prog:ftu},namely, $ 0 \le \omega < 2\pi$,can be shifted to the friendlier interval$ -\pi \le \omega < \pi$by a weighting function in the time domain.That weighting function is $e^{-i\omega_0 t}$where $\omega_0$ happens to be the Nyquist frequency,i.e.~alternate points on the time axis are to be multiplied by $-1$.\begin{comment}A subroutine for this purpose is {\tt fth()}.\progdex{fth}{FT, Hale style}\newslide\par\noindentTo Fourier transform a 1024-point complex vector {\tt cx(1024)}and then inverse transform it, we would write\begin{verbatim}call fth( 0, 1., 1, 1024, cx)call fth( 1, 1., 1, 1024, cx)\end{verbatim}\noindentYou might wonder about the apparent redundancy of using boththe argument {\tt adj} and the argument {\tt sign}.Having two arguments instead of one allowsus to define the {\em  forward} transform for a {\em  time} axiswith the opposite sign as             the      forward  transform for a {\em  space} axis.\parThe subroutine {\tt fth()} is somewhat cluttered bythe inclusion of afrequently needed practical feature---namely,the facility to extract vectors from a matrix,transform the vectors, and then restore them into the matrix.\end{comment}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲欧洲日韩av| 亚洲国产日韩一级| 亚洲精品国产视频| 精品一区二区三区在线播放视频| 99v久久综合狠狠综合久久| 日韩一区二区三区三四区视频在线观看| 久久久午夜精品| 日本网站在线观看一区二区三区 | 欧美一二区视频| 亚洲欧美日韩电影| 国产福利精品一区二区| 欧美一级午夜免费电影| 一区二区三区不卡在线观看| 国产99久久久国产精品潘金| 欧美一级欧美三级在线观看| 亚洲尤物视频在线| 白白色亚洲国产精品| 久久久天堂av| 国产在线日韩欧美| 欧美一级视频精品观看| 午夜精彩视频在线观看不卡| 在线观看日韩电影| 亚洲欧美精品午睡沙发| 不卡高清视频专区| 国产精品美女久久久久av爽李琼| 国产一区在线观看麻豆| 亚洲精品在线三区| 韩国一区二区三区| 久久色.com| 国产另类ts人妖一区二区| 精品国产精品网麻豆系列| 美女久久久精品| 欧美sm美女调教| 久久国产人妖系列| 精品成人一区二区三区四区| 久久精品99国产精品日本| 欧美一区三区二区| 九九**精品视频免费播放| 日韩欧美精品在线| 国产精品一卡二卡在线观看| 国产精品网曝门| 91在线视频免费观看| 一区二区三区四区国产精品| 欧美视频一区二区三区| 视频一区中文字幕国产| 日韩欧美一二三四区| 国产精品99久久久久久久女警| 久久精品网站免费观看| 国产成人av电影在线观看| 国产精品久久久一本精品| 色婷婷精品久久二区二区蜜臂av | 亚洲成人自拍网| 欧美一级在线视频| 麻豆精品视频在线观看视频| 精品1区2区在线观看| 成人深夜视频在线观看| 亚洲激情第一区| 日韩一级精品视频在线观看| 国产91在线看| 亚洲国产一区二区三区| 久久综合久久99| 91丨九色丨国产丨porny| 日韩av电影天堂| 欧美韩国日本综合| 欧美日韩亚洲国产综合| 国内精品写真在线观看| 亚洲乱码国产乱码精品精98午夜 | 久久免费电影网| 94-欧美-setu| 九一九一国产精品| 亚洲精选免费视频| 久久综合av免费| 色一区在线观看| 精品无人区卡一卡二卡三乱码免费卡 | 精品久久久久久久一区二区蜜臀| 国产成人精品亚洲午夜麻豆| 午夜精品久久一牛影视| 久久久精品国产免大香伊| 在线亚洲人成电影网站色www| 免费人成精品欧美精品| 亚洲欧美综合色| 26uuu亚洲综合色| 欧美日韩国产综合草草| 成人看片黄a免费看在线| 水蜜桃久久夜色精品一区的特点| 日本一区二区久久| 亚洲国产成人自拍| 91久久精品日日躁夜夜躁欧美| 精品一区二区三区香蕉蜜桃| 亚洲一区二区在线视频| 国产精品免费av| 欧美精品一区二区三区四区| 欧美日韩精品一区视频| www.欧美日韩国产在线| 国产精品99久久久久久久女警| 日韩极品在线观看| 亚洲一区影音先锋| 亚洲精品第1页| 国产精品国产a| 欧美经典三级视频一区二区三区| 日韩欧美亚洲另类制服综合在线| 精品视频资源站| 91电影在线观看| 97se亚洲国产综合自在线| 福利电影一区二区| 国产精品一区二区久久精品爱涩| 久久精品99国产精品| 天堂蜜桃91精品| 五月天中文字幕一区二区| 亚洲精品一二三区| 亚洲精品国产a| 一区二区三区日韩欧美| 亚洲精品国产精品乱码不99| 亚洲图片另类小说| 亚洲欧美一区二区在线观看| 国产精品三级在线观看| 国产清纯美女被跳蛋高潮一区二区久久w | 欧美日韩激情在线| www国产成人| 日韩一区二区在线看| 日韩视频免费直播| 欧美videos大乳护士334| 欧美大片拔萝卜| 精品久久久久久久久久久院品网| 日韩免费观看高清完整版| 欧美电影免费观看高清完整版在线| 日韩午夜精品视频| 久久色中文字幕| 国产精品视频第一区| 一区二区三区高清在线| 爽好久久久欧美精品| 国产自产2019最新不卡| 国产91在线|亚洲| 日本韩国欧美在线| 在线综合视频播放| 久久看人人爽人人| 亚洲视频在线观看三级| 亚洲午夜日本在线观看| 麻豆视频一区二区| 国产不卡在线一区| 在线观看日韩毛片| 精品国产电影一区二区| 中文字幕亚洲电影| 99re这里只有精品首页| 成人久久18免费网站麻豆| av午夜精品一区二区三区| 91在线观看成人| 欧美日韩专区在线| 亚洲精品一区二区三区四区高清| 亚洲国产成人在线| 天天亚洲美女在线视频| 国产精品亚洲专一区二区三区| 91麻豆精东视频| 亚洲欧美色图小说| 精品一区二区免费看| 99r精品视频| 精品第一国产综合精品aⅴ| 亚洲精品日日夜夜| 国产一区欧美一区| 在线欧美日韩国产| 久久精品欧美日韩| 日日摸夜夜添夜夜添国产精品 | 在线欧美小视频| 亚洲精品在线三区| 亚洲国产另类精品专区| 成人av集中营| 欧美性猛交xxxx黑人交| 国产精品福利电影一区二区三区四区| 亚洲天堂av老司机| 韩国在线一区二区| 欧美美女一区二区在线观看| 中文字幕av一区二区三区高| 日本不卡视频在线观看| 99re热视频这里只精品| 日韩午夜激情电影| 亚洲成av人片www| 99国产精品一区| 久久精品欧美一区二区三区不卡| 奇米一区二区三区| 欧美最新大片在线看| 中文字幕在线不卡视频| 国产·精品毛片| 久久综合久久99| 精品一区二区三区免费播放 | 国产精品理论片| 国内偷窥港台综合视频在线播放| 欧美日本一道本| 亚洲精品国产无天堂网2021| av电影一区二区| 欧美国产日韩一二三区| 国产一区二区三区免费| 日韩一区二区电影在线| 日韩电影在线看| 欧美猛男gaygay网站| 午夜免费久久看| 欧美精品高清视频| 视频一区二区三区在线| 欧美男同性恋视频网站| 午夜视频在线观看一区| 7777女厕盗摄久久久|