亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費(fèi)地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
\section{SETTING UP 2-D FT}\begin{comment}The program {\tt fth()} is set up so that the vectors transformedcan be either rows or columns of a two-dimensional array.In any computer language there is a way to extracta vector (column or row) from a matrix.In some languages the vector can be processed directly without extraction.To see how this works in \bx{Fortran},recall a matrix allocated as{\tt (n1,n2)}can be subscripted as a matrix{\tt (i1,i2)}or as a long vector{\tt (i1 + n1*(i2-1),1)},and {\tt call sub(x(i1,i2))} passes the subroutinea pointer to the {\tt (i1,i2)} element.To transform an entire axis, the subroutines{\tt ft1axis()} and{\tt ft2axis()} are given.For a two-dimensional FT,we simply call both{\tt ft1axis()} and{\tt ft2axis()} in either order.%\progdex{ft1axis}{FT 1-axis}\progdex{ft2axis}{FT 2-axis}\end{comment}\par%I confess that there are faster ways to do things%than those I have shown you above.%When we are doing many FTs, for example,%the overhead calculations done the first time%should be saved for use on subsequent FTs,%as in the subroutine {\tt rocca()} included in IEI.%Further, manufacturers of computers for heavy numerical use%generally design special FT codes for their architecture.%Although the basic fast FT used here%ingeniously stores its output on top of its input,%that feature is not compatible with vectorizing architectures.\subsection{Basics of two-dimensional Fourier transform}\inputdir{plane4}\parLet us review some basic facts about\bxbx{two-dimensional Fourier transform}    {Fourier transform!two-dimensional}.A two-dimensional function is represented in a computer as numerical values in a matrix, whereasa one-dimensional Fourier transform in a computeris an operation on a vector.A 2-D Fourier transform can be computed by a sequenceof 1-D Fourier transforms.We can first transform each column vector of the matrix and theneach row vector of the matrix.Alternately, we can first do the rows and later do the columns.This is diagrammed as follows:$$\def\normalbaselines{\baselineskip =\normalbaselineskip                       \lineskip10pt \lineskiplimit10pt}  \matrix{   p(t,\ x) & \smash{\mathop{\longleftrightarrow}}     & P(t, \ k_x)\cr   \lineskip10pt   \Big \updownarrow &               &\Big\updownarrow\cr   \lineskip10pt   P(\omega, \ x)& \smash{\mathop{\longleftrightarrow}}     & P(\omega,\ k_x)\cr  }$$\parThe diagram has thenotational problem that we cannot maintainthe usual convention of using a lower-case letter for the domainof physical space and an upper-case letter for the Fourier domain,because that convention cannot includethe mixed objects  $ P(t ,  k_x )$  and  $ P ( \omega , x )$.Rather than invent some new notation, it seems best to let the readerrely on the context:the arguments of the function must help name the function.\parAn example of\bxbx{two-dimensional Fourier transform}    {Fourier transform!two-dimensional}son typical deep-oceandata is shown in Figure~\ref{fig:plane4}.%\plot{plane4}{width=6in,height=6in}{  A deep-marine dataset  $p(t , x)$  from Alaska  (U.S. Geological Survey)  and the {\em  real} part of various  Fourier transforms of it.  Because of the long traveltime through the water,  the time axis does not begin at  $t=0$.}%\newslideIn the deep ocean, sediments are fine-grained and deposit slowly inflat, regular, horizontal beds.The lack of permeable rocks such as sandstone severely reducesthe potential for petroleum production from the deep ocean.The fine-grained shales overlay irregular, igneous, \bx{basement rock}s.In the plot of  $P(t ,  k_x )$,  the lateral continuity of thesediments is shown by the strong spectrum at low  $k_x$.The igneous rocks show a  $k_x$  spectrumextending to such large  $k_x$  that the deep data may be somewhat\bxbx{spatially aliased}{spatial alias}(sampled too coarsely).The plot of  $P( \omega , x)$  shows that the data contains nolow-frequency energy.% At large  $\omega$  the energy is not dropping off% as fast as one might like, which indicates temporal frequency aliasing.% This aliasing is also apparent in the plot of  $p(t , x)$,% showing up as the steplike shape of the sea-floor arrival.The dip of the sea floor shows up in  $( \omega , k_x )$-space asthe energy crossing the origin at an angle.\parAltogether, the\bxbx{two-dimensional Fourier transform}    {Fourier transform!two-dimensional}of a collection of seismogramsinvolves only twice as much computation as the one-dimensionalFourier transform of each seismogram.This is lucky.Let us write some equations to establish that the asserted proceduredoes indeed do a 2-D Fourier transform.Say first that any function of  $x$  and  $t$  maybe expressed as a superposition of sinusoidal functions:\begin{equation}p(t , x) \ \ =\ \  \int \int \  e^{ -i \omega t + i k_x x } \ P( \omega , k_x ) \  d \omega \  d k_x \label{eqn:2.9}\end{equation}The double integration can be nested to showthat the temporal transforms are done first (inside):\begin{eqnarray*}p(t , x) \ \ &=&\ \  \int \  e^{ i \,k_x x } \  \left[ \int \ e^{ -i \omega t } \  P ( \omega , k_x ) \  d \omega \right]\,dk_x\\ \ \ &=&\ \ \int \  e^{ i \,k_x x } \  P(t ,  k_x ) \  dk_x\end{eqnarray*}The quantity in brackets is a Fourier transform over  $\omega$  donefor each and every  $ k_x $.Alternately, the nesting could be done with the $ k_x $-integralon the inside.That would imply rows first instead of columns (or vice versa).It is the separability of  $\exp (-i \omega t \,+\, i\, k_x x ) $  into aproduct of exponentials that makes the computation easy and cheap.\subsection{Signs in Fourier transforms}\par\label{'sign convention'}In Fourier transforming  $t$-, $x$-, and $z$-coordinates,we must choosea sign convention for each coordinate.Of the two alternative \bx{sign convention}s,electrical engineers have chosen one and physicists another.While both have good reasons for their choices,our circumstances more closely resemble those of physicists,so we will use their convention.For the {\em  inverse} Fourier transform, our choice is\begin{equation}p(t,x,z) \eq \int \int \int \ e^{ -i \omega t \,+\, ik_x x \,+\, ik_z z}\ P ( \omega , k_x , k_z ) \ d  \omega \,  dk_x \, dk_z\label{eqn:6.1}\end{equation}For the {\em  forward} Fourier transform,the space variables carry a {\em  negative} sign, andtime carries a {\em  positive} sign.\parLet us see the reasons why electrical engineers have madethe opposite choice,and why we go with the physicists.Essentially, engineers transform only the time axis,whereas physicists transform both time and space axes.Both are simplifying their lives by their choiceof sign convention,but physicists complicate their time axisin order to simplifytheir many space axes.The engineering choice minimizes the number of minus signsassociated with the time axis, because for engineers,$d/dt$ is associated with $i\omega$ instead of,as is the case for us and for physicists,with $-i\omega$.We confirm this with equation~(\ref{eqn:6.1}).Physicists and geophysicists deal with many more independent variablesthan time.Besides the obvious three space axesare their mutual combinations, such as midpoint and offset.\parYou might ask,why not make {\em  all} the signs positive in equation~(\ref{eqn:6.1})?The reason is that in that casewaves would not move in a positive direction along the space axes.This would be especially unnatural when the space axis was a radius.Atoms, like geophysical sources,always radiate from a point to infinity,not the other way around.Thus, in equation (\ref{eqn:6.1}) the sign of the spatial frequenciesmust be opposite that of the temporal frequency.\parThe only good reason I know to choose theengineering conventionis that we might compute with anarray processor built and microcoded by engineers.Conflict of sign convention is not a problemfor the programs that transform complex-valued time functions to complex-valued frequency functions,because there the sign convention is under the user's control.But sign conflict does make a difference when we use any programthat converts real-time functions to complex frequency functions.The way to live in both worlds is to imaginethat the frequencies produced by such a programdo not range from  $0$  to  $+ \pi$  asthe program description says, but from  $0$  to  $- \pi$.Alternately, we could always take the complex conjugate of the transform,which would swap the sign of the $\omega$-axis.\subsection{Simple examples of 2-D FT}\inputdir{ft2d}\parAn example of a \bxbx{two-dimensional Fourier transform}    {Fourier transform!two-dimensional}of a pulse is shown in Figure~\ref{fig:ft2dofpulse}.%\plot{ft2dofpulse}{width=6in}{  A broadened pulse (left) and the real part of its FT (right).}%\newslideNotice the location of the pulse.It is closer to the time axis than the space axis.This will affect the real part of the FT in a certain way(see exercises).Notice the broadening of the pulse.It was an impulse smoothed over time (vertically) by convolutionwith (1,1) and over space (horizontally) with (1,4,6,4,1).This will affect the real part of the FT in another way.\parAnother example of a two-dimensional Fourier transformis given in Figure~\ref{fig:airwave}.This example simulates an impulsive air wave originating at a pointon the $x$-axis.We see a wave propagating in each directionfrom the location of the source of the wave.In Fourier space there are also two lines, one for each wave.Notice that there are other lines which do not go through the origin;these lines are called ``\bx{spatial alias}es.''Each actually goes through the originof another square plane that is not shown,but which we can imagine alongside the one shown.These other planes are periodic replicas of the one shown.%\plot{airwave}{width=6in}{  A simulated air wave (left) and the amplitude of its FT (right).}%\newslide%\subsection{Dot-product test of real to complex transforms}%My previous book, PVI,%makes the error of mixing up real number pairs with complex numbers.%The difference became a roadblock%when Dave Nichols and I were attempting to write a universal program in C++%for performing dot product tests.%(In Fortran one generally writes a different test program for each operator).%\par%Defining a complex number as a real number pair%works as you expect for addition, subtraction, and length $\overline{z} z$,%but products of complex numbers do not behave like%those of real number pairs.%To illustrate this, let us represent the operator $\Re$ that%takes the real part of a complex number by a simple%$1\times 2$ matrix multiplication%and then examine the dot-product test for this matrix.%\begin{equation}%\left[%   \begin{array}{c}%     \tilde r%     \end{array} \right]%\eq %\left[%   \begin{array}{cc}%     1 & 0%     \end{array} \right]%\left[%   \begin{array}{c}%     x \\%     y \end{array} \right]%\end{equation}%The adjoint operation is%\begin{equation}%\left[%   \begin{array}{c}%     \tilde x \\%     \tilde y \end{array} \right]%\eq%\left[%   \begin{array}{c}%     1 \\%     0 \end{array} \right]%\ %\left[%   \begin{array}{c}%      r%     \end{array} \right]%\end{equation}%%The dot product test assuming that complex numbers are%handled as real number pairs is%\begin{equation}%\tilde r r \eq%\left[%   \begin{array}{cc}%     \tilde x & \tilde y %     \end{array} \right]%\left[%   \begin{array}{c}%     x \\%     y \end{array} \right]%\eq%\tilde x x + \tilde y y%\EQNLABEL{dotpair}%\end{equation}%%%The dot-product test with complex numbers is%%\begin{equation}%%\overline{\tilde z} z \eq%%(\tilde x - i\tilde y)(x+iy)%%\eq%%\tilde x x +%%\tilde y y + i(%%\tilde x y -%%\tilde y x  )%%\EQNLABEL{dotcomplex}%%\end{equation}%%It seems there are two ways%to administer the dot-product test%to a program that inputs real values and outputs complex ones.%The first is to express inputs and outputs as number pairs%and interpret the test as equation~\EQN{dotpair}.%The second is to%%use equation~\EQN{dotcomplex}%express all inputs and outputs as complex numbers.%Then the dot-product test compares two complex numbers, say%\begin{equation}%\tilde z_1' z_1 \eq

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久99久精品视频免费观看| 一区二区三区资源| 久久99精品久久久久久动态图| 欧美日韩国产精选| 日本人妖一区二区| 欧美mv日韩mv亚洲| 国产一本一道久久香蕉| 亚洲国产成人在线| 91视频精品在这里| 亚洲免费av在线| 欧美一区二区视频在线观看 | 91免费版在线| 亚洲午夜羞羞片| 日韩欧美国产不卡| 成人免费电影视频| 亚洲一区二区视频| 日韩你懂的电影在线观看| 国产露脸91国语对白| 国产精品不卡一区二区三区| 色视频成人在线观看免| 人人精品人人爱| 欧美国产一区二区| 欧美理论电影在线| 国产成人av资源| 亚洲一区免费在线观看| 久久一区二区三区四区| 色欧美乱欧美15图片| 久久99久久久欧美国产| 一区在线中文字幕| 91精品免费在线观看| 成人午夜激情在线| 日韩成人一区二区| 国产精品乱人伦中文| 欧美一区二区高清| 99国产精品久久久久久久久久| 日韩电影在线免费观看| 国产精品伦一区| 日韩精品在线一区二区| 欧美专区日韩专区| 国产成人免费视频网站高清观看视频| 一区二区三区加勒比av| 国产亚洲精品aa| 欧美人与性动xxxx| 91麻豆视频网站| 国产高清在线精品| 日韩高清不卡一区| 一区二区日韩av| 国产精品美女久久久久久2018| 精品免费国产二区三区 | 精品视频123区在线观看| 激情综合色播五月| 日韩精品免费专区| 亚洲精品免费电影| 国产精品美女www爽爽爽| 久久综合国产精品| 在线播放91灌醉迷j高跟美女 | 在线亚洲免费视频| 丰满亚洲少妇av| 国产制服丝袜一区| 美女视频一区二区| 日本成人在线电影网| 亚洲精品国产高清久久伦理二区| 国产日韩高清在线| 久久蜜桃av一区二区天堂| 日韩一区二区免费在线电影| 欧美日韩免费视频| 欧美在线免费视屏| 一本一本久久a久久精品综合麻豆| 国产美女av一区二区三区| 精品在线观看视频| 精品一区二区精品| 紧缚奴在线一区二区三区| 蓝色福利精品导航| 精品一区二区三区不卡| 久久爱另类一区二区小说| 精品一区二区综合| 精品一区二区三区视频| 国产综合色视频| 国产麻豆精品在线| 国产高清久久久| 成人的网站免费观看| 97久久超碰国产精品电影| 99国产精品视频免费观看| 色激情天天射综合网| 欧美综合视频在线观看| 欧美日本在线看| 日韩一级完整毛片| 久久久影院官网| 中文字幕在线观看一区二区| 亚洲日本免费电影| 亚洲午夜久久久久久久久电影院| 国产日韩欧美a| 26uuu欧美| 久久精子c满五个校花| 国产精品无圣光一区二区| 亚洲国产精品成人综合| 中文字幕制服丝袜一区二区三区| 亚洲色图欧洲色图| 丝袜诱惑亚洲看片| 精品亚洲aⅴ乱码一区二区三区| 国产高清久久久久| 在线观看网站黄不卡| 在线不卡的av| 国产色爱av资源综合区| 最新国产精品久久精品| 亚洲国产毛片aaaaa无费看| 奇米影视在线99精品| 国产成人a级片| 91国偷自产一区二区开放时间| 欧美日韩一区二区电影| 久久久久久99久久久精品网站| 亚洲天天做日日做天天谢日日欢| 亚洲国产欧美在线人成| 久久99蜜桃精品| 92国产精品观看| 日韩欧美一级片| 亚洲素人一区二区| 日韩av电影天堂| 不卡av免费在线观看| 欧美美女直播网站| 国产婷婷色一区二区三区四区 | 欧美在线free| 久久一区二区视频| 亚洲专区一二三| 国产乱码字幕精品高清av| 91高清视频免费看| 久久精品人人做人人爽97| 亚洲狠狠爱一区二区三区| 国产凹凸在线观看一区二区| 欧美日韩在线三区| 国产精品免费视频一区| 六月婷婷色综合| 91福利国产成人精品照片| 国产日韩欧美制服另类| 视频一区中文字幕国产| 色综合久久久久久久| 欧美激情中文不卡| 久久国产日韩欧美精品| 欧美日韩三级在线| 亚洲欧美日韩系列| 高清国产一区二区| 精品日产卡一卡二卡麻豆| 亚洲国产精品一区二区www| 成人福利视频在线看| 久久婷婷综合激情| 免费视频一区二区| 欧美日韩高清一区二区三区| 亚洲人快播电影网| 大美女一区二区三区| 精品999久久久| 日av在线不卡| 91精品国产综合久久蜜臀| 亚洲午夜免费电影| 欧美视频在线观看一区| 亚洲激情中文1区| 91久久精品一区二区三区| 亚洲欧洲日产国码二区| 成人午夜视频在线观看| 中文字幕第一区| 成人高清免费在线播放| 国产精品免费免费| 99综合电影在线视频| 中文字幕在线观看不卡视频| eeuss鲁片一区二区三区| 欧美国产精品一区二区| 成人黄色小视频| 国产精品久久久久永久免费观看| 成人一区二区三区在线观看| 国产日韩欧美麻豆| 成人一道本在线| 亚洲欧美日韩国产成人精品影院| 不卡的av电影在线观看| 亚洲天天做日日做天天谢日日欢| 99久久99精品久久久久久| 亚洲欧洲韩国日本视频| 97久久精品人人做人人爽| 一区二区三区高清| 欧美精品一卡两卡| 蜜桃视频一区二区三区在线观看| 欧美一级生活片| 国内外精品视频| 国产精品美女久久久久aⅴ| 91亚洲精品乱码久久久久久蜜桃| 亚洲精品视频免费看| 欧美精品日日鲁夜夜添| 老司机免费视频一区二区| 国产日韩在线不卡| 91丨九色丨国产丨porny| 亚洲国产欧美日韩另类综合 | 日韩高清在线不卡| 欧美成人a在线| 国产宾馆实践打屁股91| 亚洲黄色小说网站| 欧美一区二区福利视频| 国产成人福利片| 亚洲国产一区二区三区| 日韩精品一区在线| 99久久99久久精品免费观看| 天天操天天干天天综合网| 欧美精品一区二区三区一线天视频|