亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
equation~(\ref{eqn:huygens}),and in three dimensions,a hyperbola of revolution (umbrella?)carrying a time-derivative waveform.\subsection{Hankel tail}\inputdir{hankel}\parThe waveform in equation~(\ref{eqn:huygens}) often arises in practice(as the 2-D Huygens wavelet).Because of the discontinuities on the left side of equation~(\ref{eqn:huygens}),it is not easy to visualize.Thinking again of the time derivativeas a convolution with the doublet $(1,-1)/\Delta t$,we imagine the 2-D Huygen's wavelet as a positive impulse followedby negative signal decaying as $-t^{-3/2}$.This decaying signal is sometimes called the ``\bx{Hankel tail}.''In the frequency domain$-i\omega= |\omega |e ^ {-i90^\circ}$has a 90 degree phase angle and $\sqrt{-i\omega}= |\omega |^{1/2} e ^ {-i45^\circ}$has a \bx{45 degree phase angle}.\opdex{halfint}{half derivative}{52}{68}{filt/imag}%\newslide\parIn practice, it is easiest to representand to apply the 2-D Huygen's wavelet in the frequency domain.Subroutine \texttt{halfint()} \vpageref{/prog:halfint} is provided for that purpose.Instead of using $\sqrt{-i\omega}$ whichhas a discontinuity at the Nyquist frequencyand a noncausal time function,I use the square root of a causal representationof a finite difference, i.e.~$\sqrt{1-Z}$,which is well behaved at the Nyquist frequencyand has the advantage that the modeling operator is causal(vanishes when $t<t_0$).Fourier transform is done using subroutine \texttt{ftu()} \vpageref{/prog:ftu}.Passing an impulse function into subroutine {\tt halfint()}gives the response seen in Figure~\ref{fig:hankel}.\sideplot{hankel}{width=2.0in}{  Impulse response (delayed) of finite difference operator of half order.  Twice applying this filter is equivalent to once applying $(1,-1)$.}\HideThis{\subsection{Huygen's secondary source}\par\bx{Huygen's secondary source} is the conceptthat a plane wavecan be regarded as broken into many point sources.Each point makes a circular wave in $(x,z)$-spaceor equivalently a hyperbola in $(x,t)$-space.The hyperbolas shown in Figure~\ref{fig:hyplay}are all tangent to the horizontal line.Observe that the line density on the plot is greatnear the line but weaker away from it.We begin analysis from the assumption thateach hyperbola carries a simple impulse function of time.We will add these hyperbolas togetherand discover that the sum is a plane wave,but the waveform is not an impulse function of time,but another function with a tail in the time domain andan $\omega^{-1/2}$ amplitude spectrum.From this we conclude that if the original waveformon the hyperbolahad an $\omega^{1/2}$ amplitude spectrum(instead of being an impulse with a constant spectrum)then we would have an improvedrepresentation of the plane wave as a sum of points.The phase of this $\sqrt{\omega}$spectrum should be such that the final waveform is causalas it appears in Figure~\ref{fig:hankel},indicating the validity of representationof the numerical representation of $\sqrt{-i\omega}$found in subroutine \texttt{halfint()} \vpageref{/prog:halfint}.More theoretical details are found in IEI.\subsection{Huygen's secondary source in two dimensions}First we calculate the density of curvesas a function of time.The density goes to infinity as the hyperbola separation$\Delta x $ tends to zeroin Figure~\ref{fig:hyplay}.Then the hyperbolas sum to a plane wavewhich carries the waveform that we want to know.\activesideplot{hyplay}{width=2.0in}{ER}{	Many hyperbolas tangent to a line.	}\parWhen a hyperbolic event carries a wavelet,the wavelet covers an area in the $(t,x)$-plane.Define this area as that between the two hyperbolasshown in Figure~\ref{fig:hyparea}.These two curves, $x_1(t)$ and $x_2(t)$ are\begin{eqnarray}t &=& v^{-1}\ \sqrt{z^2+x_1^2}		\\t &=& v^{-1}\ \sqrt{z^2+x_2^2} +\Delta t\end{eqnarray}\activesideplot{hyparea}{width=2.0in}{ER}{	Detailed view of one of the many hyperbolas	in figure~\protect\ref{fig:hyplay}.	Two hyperbolas are separated by $\Delta t$.	An impulsive signal is defined as one that	is zero everywhere but between the two hyperbolas	where its amplitude is $1/\Delta t$.	}\parIn the limit $\Delta t \rightarrow 0$,the waveform is an impulse functionwhose temporal spectrum is constant.In that limit, the many waveforms in Figure~\ref{fig:hyplay}superpose giving a great concentration at the apex.Since the many hyperbolas are identical with one another,the time dependence of their sum is (within a scale factor)the same time dependence of the shaded area of the single hyperbolain Figure~\ref{fig:hyparea}.\parThe separation between the two curves, $\Delta x$ is\begin{equation}\Delta x \eq x(t_1) - x(t_2) \eq   \sqrt{ t          ^2v^2-z^2}  \ -\    \sqrt{(t-\Delta t)^2v^2-z^2}\end{equation}The area in Figure~\ref{fig:hyparea} is a length, integrated over time.Between the two hyperbolas of separation $\Delta t$,we take a constant signal of strength $1/\Delta t$ whichadds up to an amplitude at time $t$ of $A_{\rm hyp}(t)$.\begin{equation}A_{\rm hyp}(t) \eq{\Delta x \over \Delta t} \eq{d \over dt} \ \sqrt{t^2 v^2-z^2} \eq{t v^2\over \sqrt{t^2 v^2-z^2} }\quad \quad {\rm for} ~ t>z/v\label{eqn:Shyp}\end{equation}To avoid much clutter that belongs in a mathematics bookrather than in a seismology book,we concentrate our attention on the discontinuity itself.Mathematically, this amounts to ignoring all but the highest frequencies.Seismologically, we say thatafter a signal like equation~(\ref{eqn:Shyp}) passes through the filtersand gain control processes typical of data collection,the numerator $t$ does not warrant comment,but the power of $t$ at the pole itself is important.\parBy making this high frequency approximation,we are setting aside some calculationsthat we should be able to do for a constant velocity mediumbut which would not apply to a medium with velocity as a function of depth.Divergence considerations, for example,suggest that the amplitude of each hyperbola should not bea constant, but should drop off proportional to $t^{-1/2}$.Another example is that of parabolas insteadof hyperbolas, i.e.~$x(t)=\sqrt{t-t_0}$.(When velocity changes with depth, we no longer have hyperbolas,but the tops of the traveltime curve could be approximated by a parabola.)Then the amplitude is $A_{\rm par}(t)= 1/\sqrt{t-t_0}$.Notice that the divisor in equation~(\ref{eqn:Shyp}) for the hyperbola$\sqrt{t^2 v^2-z^2}=\sqrt{tv-z}\sqrt{tv+z}$has the same half power discontinuity at $z=tv$ as the parabola.Thus the amplitude spectrum at high frequencies for eitherthe parabola or the hyperbola will drop off as the inversehalf power of frequency according to equation~(\ref{eqn:halfint}).To get a plane wave with the constant spectrum of an impulseinstead of this inverse-square-root spectrum,we must use hyperbolas (or parabolas),not carrying an impulse function,but instead carrying a square-root spectrum(to cancel the {\em  inverse}-square-root spectrum that arisesfrom superposing the hyperbolas.)Equation~(\ref{eqn:huygens}) gives us a causal waveform with the desired spectrum.Thus the decomposition of an impulsive 2-D planewave into hyperbolas requires the hyperbolas to carrythe ``half-order differential'' waveform given in equation~(\ref{eqn:huygens}).\subsection{Three dimensions}Interestingly,the Huygen's wavelet is different in \bx{three dimensions}than in two dimensions.In three dimensions, there is no Hankel tail.In three dimensions we have the definition$x^2+y^2=r^2$ andfrom $t^2v^2=x^2+y^2+z^2$ we find on a plane of constant $z$,that the equation for a circle expanding with time is$r=\sqrt{t^2v^2-z^2}$.Between time $t$ and $t+\Delta t$ is a ring with an area$2\pi r \Delta r$.Taking the signal amplitude in the ring to be $1/\Delta t$,analogous to equation~(\ref{eqn:Shyp}) the amplitude at time $t$ is\begin{eqnarray}A(t) &=&  {\rm step}(t-z/v) \ 	2\pi r \ {\Delta r \over \Delta t }				\\A(t) &=&  {\rm step}(t-z/v)  \ 	2\pi \sqrt{t^2v^2-z^2}\ {d~\over dt}\ \sqrt{t^2v^2-z^2}		\\A(t) &=&  {\rm step}(t-z/v) \ 2\pi v^2 \ t \label{eqn:tstep}\end{eqnarray}As before, in seismologywe are interested in the high frequency behaviorso the scaling $t$ in equation~(\ref{eqn:tstep})is not nearly so important as is the step function.By equation~(\ref{eqn:iterint})the step function causes the spectrum to decay as $\omega^{-1}$.Our original erroneous assumptionthat Huygen's hyperbola of revolutionshould carry a positive impulseleads to the contradictionthat an impulsive plane wavedecomposed into Huygen's sources and added together againdoes not preserve the constant spectrumof the original impulsive waveform.We can get the missing $\omega$ back into the spectrumby having the hyperbola of revolution carrya time-derivative filter instead of an impulse.Thus in three dimensions,a plane wave can be regarded, approximately,as the superposition of many hyperboloidal responses,each carrying a $d/dt$ waveform.\subsection{Amplitude versus offset on Huygen's wave}\sx{amplitude}\sx{AVO}The analysis above did not show that in two dimensionsthe hyperbolas should carry the scaling factor $x/t^{3/2}$and in three dimensions the scaling factor $x/t^2$.These scaling factors can be explainedas combination of two parts.The first part of the scaling factor isa divergence correction dueto expansion of the wavefront.The second part of the scaling factor isa cosine function $(\tau/t)$ called the obliquity functionwhich is explained as the difference between a point sourceand a source like a short line or patch which has theability to radiate preferentially along the directionof the maximum of the cosine.\parYou might fear that analysis of weights and waveshapeswould be a big chore in stratified media $v(z)$.Luckily it is all made easy by Fourier domainmethods in chapters~\ref{ft1/paper:ft1} and~\ref{dwnc/paper:dwnc}.\begin{exer}\item	If we input a one layer model $\delta(t-t_0)\,{\rm const}(x)$	to subroutine \texttt{kirchslow()} \vpageref{/prog:kirchslow},	we find an impulse function followed by a	${\rm step}(t-t_0)/\sqrt{t}$ waveform.	What data would result from	a 3-D version of {\tt kirchslow()}	on the model $\delta(t-t_0)\,{\rm const}(x,y)$?\item   At the bottom of a well (deep hole in the ground) is an explosion.	An air wave propagates up the well and when emerging at the surface	it becomes a spherical wave.	At the mouth of the well	$(x,y,z)=(0,0,0)$ an air wave time function $f(t)$ is observed.	The speed of sound in air is a constant 340 m/s.	\par	Write an equation	for the air wave	expanding spherically from the top of the well.	Assume wavelengths and observation distances are 	are large compared to the well diameter.	Be sure your equation carries the correct time-dependent waveform.\item	Given the signal ${\rm step}(t)/\sqrt{t}$	\begin{enumerate}	\item What is its {\em  energy} spectrum?	\item Would you say the spectral color is red, white, or blue?	\end{enumerate}\end{exer}}% end of HideThis\section{References}\reference{	Special issue on fast Fourier transform, June 1969:	IEEE Trans.~on Audio and Electroacoustics	(now known as IEEE Trans.~on Acoustics, Speech,	and Signal Processing), {\bf AU-17}, entire issue (66-172).	}%\newpage%\showiex%\par%\iex{Exer/Inter2}{inter2}%\iex{Exer/ed1D}{Lab2}%\newpage

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
天天av天天翘天天综合网色鬼国产| 大美女一区二区三区| 韩国成人在线视频| 91网址在线看| 精品国产免费久久| 亚洲永久精品大片| 国产电影一区二区三区| 国产午夜久久久久| 夜夜精品浪潮av一区二区三区| 国产综合色视频| 欧美视频自拍偷拍| 综合自拍亚洲综合图不卡区| 久久成人av少妇免费| 欧美喷水一区二区| 亚洲精品伦理在线| 成人免费精品视频| 久久久国际精品| 日本成人在线电影网| 欧美亚洲一区二区在线观看| 国产精品理论在线观看| 国产毛片一区二区| 日韩午夜三级在线| 午夜电影一区二区三区| 欧美亚洲国产一区二区三区va| 中文字幕 久热精品 视频在线| 精品影院一区二区久久久| 欧美日韩高清在线| 性久久久久久久| 色婷婷综合久久久久中文| 亚洲视频每日更新| 成人黄色片在线观看| 国产视频一区不卡| 国产福利一区在线| 国产亚洲午夜高清国产拍精品| 热久久一区二区| 日韩一区二区视频| 免费观看在线色综合| 欧美一区二区三区思思人| 五月天一区二区三区| 欧美精选一区二区| 日韩国产欧美在线播放| 日韩欧美成人激情| 紧缚捆绑精品一区二区| 久久影音资源网| 粉嫩av一区二区三区在线播放| 国产精品婷婷午夜在线观看| 成人免费视频免费观看| 亚洲视频综合在线| 91国偷自产一区二区使用方法| 亚洲区小说区图片区qvod| 在线精品国精品国产尤物884a| 亚洲一区二区综合| 日韩一二在线观看| 国产精品自拍一区| 亚洲天堂精品在线观看| 欧美日韩一区二区三区视频| 日韩av一区二区三区| 久久看人人爽人人| 97久久久精品综合88久久| 一区二区三区四区乱视频| 91精品国产综合久久久久久久 | 久久精品无码一区二区三区| 成人午夜激情影院| 亚洲午夜一二三区视频| 欧美电视剧在线看免费| gogo大胆日本视频一区| 亚洲国产成人av网| 国产亚洲一区字幕| 色美美综合视频| 久久精品国产精品亚洲红杏| 久久嫩草精品久久久精品| 色爱区综合激月婷婷| 理论电影国产精品| 国产精品白丝在线| 日韩一区二区三区电影在线观看| 国产91丝袜在线18| 午夜精品在线视频一区| 国产免费久久精品| 欧美日韩免费一区二区三区| 国产精品99久久久久| 亚洲永久免费视频| 国产人伦精品一区二区| 制服丝袜亚洲色图| 91色婷婷久久久久合中文| 久久99精品久久久久婷婷| 1024成人网| 久久久久久夜精品精品免费| 欧美日本乱大交xxxxx| 丁香一区二区三区| 免费xxxx性欧美18vr| 一区二区在线免费观看| 久久久av毛片精品| 欧美一区二区三区日韩视频| 一本色道亚洲精品aⅴ| 国产剧情av麻豆香蕉精品| 天堂一区二区在线免费观看| 亚洲欧洲无码一区二区三区| 日韩欧美第一区| 欧美日韩久久一区二区| 91蝌蚪porny| 粉嫩aⅴ一区二区三区四区| 日韩高清中文字幕一区| 一区二区三区中文在线观看| 国产精品三级av| 久久久一区二区三区捆绑**| 日韩欧美国产成人一区二区| 欧美日韩午夜影院| 欧美性做爰猛烈叫床潮| jvid福利写真一区二区三区| 国产成人免费视频网站高清观看视频| 亚洲 欧美综合在线网络| 亚洲欧美欧美一区二区三区| 青青青爽久久午夜综合久久午夜| 椎名由奈av一区二区三区| 国产日韩精品一区二区三区在线| 2021久久国产精品不只是精品| 日韩亚洲国产中文字幕欧美| 91精品国产色综合久久| 欧美日韩久久不卡| 欧美日韩中文另类| 欧美精选午夜久久久乱码6080| 一本到一区二区三区| 色婷婷av一区二区三区之一色屋| 91小视频免费观看| 色综合色综合色综合色综合色综合| 99久久精品免费观看| 色综合天天综合给合国产| 99久久精品国产毛片| 91丨porny丨最新| 在线视频欧美区| 欧美日韩久久一区| 欧美一区二区精品在线| 精品久久一二三区| 国产网红主播福利一区二区| 中文av一区二区| 亚洲免费视频成人| 亚洲成在人线免费| 秋霞成人午夜伦在线观看| 精品一区二区三区视频| 国产毛片精品视频| 91婷婷韩国欧美一区二区| 欧美在线观看一二区| 日韩一区二区三区高清免费看看| 精品免费国产一区二区三区四区| 久久久久久电影| 亚洲图片另类小说| 日韩国产在线观看一区| 国产在线精品国自产拍免费| 99久久99久久综合| 欧美日韩成人高清| 久久日韩粉嫩一区二区三区| 国产精品久久久久一区二区三区 | 国产 日韩 欧美大片| 色哟哟国产精品| 日韩一区二区精品在线观看| 久久综合色之久久综合| 《视频一区视频二区| 日日嗨av一区二区三区四区| 国产成人在线视频网站| 欧美网站一区二区| 欧美精品一区男女天堂| 亚洲综合图片区| 国产综合色产在线精品| 在线视频一区二区三区| 久久久久久久久久久久久久久99| 亚洲精品视频在线观看网站| 免费高清在线视频一区·| 成人av资源下载| 日韩一级免费一区| 亚洲女人小视频在线观看| 久久成人麻豆午夜电影| 欧美午夜精品一区二区蜜桃| 精品国产乱码91久久久久久网站| 亚洲色图欧洲色图| 国产乱对白刺激视频不卡| 欧美日韩精品福利| 成人欧美一区二区三区小说| 精品一区二区三区av| 欧美日韩在线不卡| **性色生活片久久毛片| 国产精品一区二区免费不卡| 欧美疯狂做受xxxx富婆| 亚洲激情在线激情| 成人h动漫精品一区二区| 精品国产亚洲在线| 日本一区中文字幕| 欧美亚洲国产一区二区三区va | 日韩精品一区二区三区老鸭窝| 一区二区激情视频| 高清在线不卡av| 久久久久国产一区二区三区四区| 视频一区二区三区在线| 91福利视频久久久久| 一区二区中文字幕在线| 成人一区在线观看| 久久美女艺术照精彩视频福利播放| 日本vs亚洲vs韩国一区三区二区 | 国产精品12区| 精品美女一区二区三区| 日韩—二三区免费观看av|