亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
% copyright (c) 1997 Jon Claerbout\title{Nonstationarity: patching}\author{Jon Claerbout}\maketitle\sx{nonstationarity}\sx{patching}\label{paper:pch}\inputdir{XFig}There are many reasonsfor cutting data planes or image planes into overlapping pieces (patches),operating on the pieces, and then putting them back together again,as depicted in Figure~\ref{fig:antoine}.The earth's dip varies with lateral location and depth. The dip spectrum and spatial spectrum thus also varies.The dip itself is the essence of almost all earth mapping,and its spectrum plays an important rolein the estimation any earth properties.In statistical estimation theory,the word to describe changing statistical properties is ``\bx{nonstationary}''.\plot{antoine}{width=5.00in,height=3.5in}{  Decomposing a wall of information into windows (also called patches).  Left is an example of a 2-D space  input to module \texttt{patch}.  Right shows a close-up of the output (top left corner).}%\activesideplot{rayab2D}{width=3.00in,height=1.5in}{NR}{%        Left is space of inputs and outputs.%        Right is during analysis.%        }\parWe begin this chapter with basic patching conceptsalong with supporting utility code.%As in Chapters \ref{iin/paper:iin} and \ref{gem/paper:gem},%I exhibit two-dimensional subroutines only.%Three-dimensional code is an easy extension,%which is in the library (CD-ROM and web)%but not displayed (to reduce clutter).The language of this chapter,{\it patch,}{\it overlap,}{\it window,}{\it wall,}is two-dimensional,but it may as well be three-dimensional,{\it cube,}{\it subcube,}{\it brick,}or one-dimensional,{\it line,}{\it interval.}We sometimes use the language of windows on a wall.But since we usually want to have overlapping windows,better imagery would be to say we assemble a quilt from patches.\parThe codes are designed to work in any number of dimensions.After developing the infrastructure,we examine some two-dimensional, time- and space-variable applications:adaptive steep-dip rejection,noise reduction by prediction,and segregation of signals and noises.\section{PATCHING TECHNOLOGY}A plane of information, either data or an image,\sx{wall}say {\tt wall(nwall1, nwall2)}, will be divided up intoan array of overlapping \bx{window}seach window of size {\tt (nwind1,nwind2)}.To choose the number of windows, you specify {\tt (npatch1,npatch2)}.Overlap on the 2-axis is measured by the fraction{\tt (nwind2*npatch2)/nwall2}.We turn to the language of F90 which allows us to discuss$N$-dimensional hypercubes almost as easily as two-dimensional spaces.We define an $N$-dimensional volume (like the wall) with the vector\texttt{nwall= (nwall1, nwall2, ...)}.We define subvolume size (like a 2-D window) with the vector\texttt{nwind=(nwind1, nwind2, ...)}.The number of subvolumes on each axis is\texttt{npatch=(npatch1, npatch2, ...)}.The operator\texttt{patch} \vpageref{lst:patch}simply grabs one patch from the wall,or when used in adjoint form, it puts the patch back on the wall.The number of patches on the wall is\texttt{product(npatch)}.Getting and putting all the patches is shown later in module\texttt{patching} \vpageref{lst:patching}.\parThe $i$-th patch is denoted by the scalar counter \texttt{ipatch}.Typical patch extraction begins by taking\texttt{ipatch}, a C linear index,and converting it to a multidimensional subscript \texttt{jj}each component of which is less than \texttt{npatch}.The patches cover all edges and corners of the given data plane(actually the hypervolume)even where\texttt{nwall/npatch} is not an integer,even for axes whose length is not an integer number of the patch length.Where there are noninteger ratios,the spacing of patches is slightly uneven,but we'll see later thatit is easy to reassemble seamlessly the full plane from the patches,so the unevenness does not matter.You might wish to review the utilities\texttt{line2cart} and\texttt{cart2line} \vpageref{lst:cartesian}which convert between multidimensional array subscriptsand the linear memory subscriptbefore looking at the patch extraction-putback code:\opdex{patch}{extract patches}{41}{67}{user/gee}The cartesian vector \texttt{jj}points to the beginning of a patch, where on the wallthe (1,1,..) coordinate of the patch lies.Obviously this begins at the beginning edge of the wall.Then we pick \texttt{jj} so that the last patch on any axishas its last point exactly abutting the end of the axis.The formula for doing this would divide by zerofor a wall with only one patch on it.This case arises legitimately where an axis has length one.Thus we handle the case \texttt{npatch=1} by abutting the patch to thebeginning of the wall and forgetting about its end.As in any code mixing integers with floats,to guard against having a floating-point number, say 99.9999,rounding down to 99 instead of up to 100,the rule is to always add .5 to a floating point numberthe moment before converting it to an integer.Now we are ready to sweep a window to or from the wall.The number of points in a window is \texttt{size(wind)} or equivalently\texttt{product(nwind)}.\inputdir{patch}Figure~\ref{fig:parcel} shows an example with fivenonoverlapping patches on the 1-axis and many overlapping patcheson the 2-axis.\sideplot{parcel}{width=3.00in}{  A plane of identical values  after patches have been cut  and then added back.  Results are shown for  \texttt{nwall=(100,30)},  \texttt{nwind=(17,6)},  \texttt{npatch=(5,11)}.  For these parameters,  there is gapping on the horizontal axis  and overlap on the depth axis.  % n1=100 w1=17 k1=5 n2=30 w2=6 k2=11}\subsection{Weighting and reconstructing}\sx{weighting patches}\parThe adjoint of extracting all the patches is adding them back.Because of the overlaps, the adjoint is not the inverse.In many applications, \bx{inverse patching} is required;i.e.~patching things back together seamlessly.This can be done with weighting functions.You can have any weighting function you wishand I will provide youthe patching reconstruction operator $\tilde{\bold I}_p$ in\begin{equation}\tilde {\bf d}\quad = \quad [ \bold W_{\rm wall} \bold P' \bold W_{\rm wind} \bold P ] \bold d\quad = \quad \tilde{\bold I}_p \, \bold d\label{eqn:idemeqn}\end{equation}where $\bold d$ is your initial data,$\tilde{\bf d}$ is the reconstructed data,$\bold P$ is the patching operator,$\bold P'$ is adjoint patching (adding the patches).$\bold W_{\rm wind}$ is your chosen weighting function in the window, and $\bold W_{\rm wall}$ is the weighting functionfor the whole wall.You specify any $\bold W_{\rm wind}$ you like,and module \texttt{mkwallwt} belowbuilds the weighting function $\bold W_{\rm wall}$that you need to applyto your wall of reconstructed data,so it will undo the nasty effects of the overlap of windowsand the shape of your window-weighting function.You do not need to change your window weighting functionwhen you increase or decrease the amount of overlapbetween windows because$\bold W_{\rm wall}$takes care of it.The method is touse adjoint \texttt{patch} \vpageref{lst:patch}to add the weights of each window onto the walland finally to invert the sum wherever it is non-zero.(You lose data wherever the sum is zero).\moddex{mkwallwt}{make wall weight}{25}{59}{user/gee}\parNo matrices are needed to show that this method succeeds,because data values are never mixed with one another.An equation for any reconstructed data value $\tilde d$as a function of the original value $d$ and the weights $w_i$that hit $d$ is $\tilde d = (\sum_i w_i d) / \sum_i w_i = d$.Thus, our process is simply a ``partition of unity.''\parTo demonstrate the program,I made a random weighting functionto use in each window with positive random numbers.The general strategy allows us to use different weights in different windows.That flexibility adds clutter, however,so here we simply use the same weighting function in each window.%\progdex{mkrandwt}{make random wt.}\parThe operator$\tilde{\bold I}_p$is called ``\bx{idempotent}.''The word ``idempotent'' means ``self-power,'' becausefor any $N$,  $0^N=0$ and $1^N=1$,thus the numbers 0 and 1 share the property that raisedto any power they remain themselves.Likewise, the patching reconstruction operatormultiplies every data value by either one or zero.Figure~\ref{fig:idempatch} shows the resultobtained when a plane of identical constant values $\bold d$is passed into the patching reconstruction operator $\tilde{\bold I}_p$.The result is constant on the 2-axis, which confirmsthatthere is adequate sampling on the 2-axis,and although the weighting function is made of random numbers,all trace of random numbers has disappeared from the output.On the 1-axis the output is constant,except for being zero in gaps,because the windows do not overlap on the 1-axis.\sideplot{idempatch}{width=3.00in}{  A plane of identical values passed through  the idempotent patching reconstruction operator.  Results are shown for the same parameters  as Figure~\protect\ref{fig:parcel}.}\parModule \texttt{patching} assists in reusing the patching technique. Ittakes a linear operator $\bold F$.as its argument and applies it in patches.Mathematically, this is$ [\bold W_{\rm wall} \bold P' \bold W_{\rm wind} \bold F \bold P ] \bold d$.It is assumed that the input and output sizes for the operator\texttt{oper} are equal.\moddex{patching}{generic patching}{51}{70}{user/gee}\par%The first code of this nature we will examine%(subroutine {\tt idempatch()})%uses the trivial identity matrix as the linear%operator $\bold F$.%(Later, after you understand the clutter,%we proceed to install 2-D filtering as $\bold F$.)%To perform the weighting operation we use subroutine%\GPROG{diag}.%To show you where to install data processing with any linear operator,%I included some trivial processing, multiplying by {\tt 1.0}.%This is done by subroutine \GPROG{ident}.%Because the composite operator is also a linear operator%I also include code for the adjoint.%Including the adjoint nearly doubles the length of the code%which means that you hardly need to think about%the second half which is a mirror image.%\progdex{idempatch}{patch inversion}%%\par%Figure~\FIG{idempatch} shows the result%when a plane of identical values is passed through the%{\tt idempatch()} subroutine.\subsection{2-D filtering in patches}A way to do time- and space-variable filtering\sx{filter ! time and space variable}is to do invariant filtering within each patch.Typically, we apply a filter, say $\bold F_p$, in each patch.The composite operator, filtering in patches,$\tilde{\bold F}$,is given by\begin{equation}\tilde {\bf d}\quad = \quad [ \bold W_{\rm wall} \bold P' \bold W_{\rm wind} \bold F_p \bold P ]\  \bold d\quad = \quad \tilde{\bold F}\ \bold d\label{eqn:patchfilt}\end{equation}%A convenient subroutine for two-dimensional filtering is%\texttt{icaf2()} \vpageref{lst:icaf2}.%For this no-end-effect convolution routine,\inputdir{XFig}I built a triangular weighting routine\texttt{tentn()}that tapers from the center of the patch of the filter's {\it outputs}towards the edges.Accomplishing this weighting is complicated by(1) the constraintthat the filter must not move off the edge of the input patchand(2) the alignment of the input and the output.The layout for prediction-error filters is shownin Figure \ref{fig:rabdomain}.\sideplot{rabdomain}{width=1.50in}{  Domain of inputs and outputs of a two-dimensional  prediction-error filter.}\sideplot{rabtent}{width=1.50in}{  Placement of tent-like weighting  function in the space of filter inputs and outputs.}We need a weighting function that vanishes where the filterhas no outputs.The amplitude of the weighting function is not very importantbecause we have learned how to put signals back togetherproperly for arbitrary weighting functions.We can use any pyramidal or tent-like shapethat drops to zero outside the domain of the filter output.The job is done by subroutine {\tt tentn()}.A new parameter needed by \texttt{tentn}is \texttt{a}, the coordinate of the beginning of the tent.%When you are studying diagrams in%Figure \ref{fig:rabdomain}, %to internal filtering%%with subroutine \texttt{icaf2()} \vpageref{lst:icaf2},%it helps to remember that when the filter index {\tt b1}%equals {\tt lag1},%then the output 1-axis pointer {\tt y1}%matches the input pointer {\tt x1} (and likewise for the 2-axis).\moddex{tent}{tent weights}{45}{58}{user/gee}\inputdir{patch}\parIn applications where triangle weights are needed on the {\it inputs}(or where we can work on a patchwithout having interference with edges),we can get ``triangle tent'' weightsfrom {\tt tentn()} if we set filter dimensions and lags to unity,as shown in Figure~\ref{fig:wind0wt}.\sideplot{wind1wt}{width=3.00in}{  Window weights from {\tt tentn()}  with  %	{\tt         w1=61, w2=19 a1=1, a2=1, lag1=1, lag2=1 }.  \texttt{ nwind=(61,19), center=(31,1), a=(1,1) }.}\par    Triangle weighting functions\sx{triangle weighting functions}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文天堂在线一区| 亚洲精品ww久久久久久p站| 99国产一区二区三精品乱码| 亚洲无人区一区| 国产日韩精品一区二区三区在线| 欧美日韩精品二区第二页| 国产成人午夜精品影院观看视频| 亚洲一区二区三区在线看| 国产视频不卡一区| 这里只有精品视频在线观看| 91日韩一区二区三区| 国产乱人伦精品一区二区在线观看| 亚洲一区二区三区四区的| 国产女人18水真多18精品一级做| 日韩欧美亚洲另类制服综合在线| 欧美优质美女网站| gogo大胆日本视频一区| 国产传媒一区在线| 久久超碰97中文字幕| 午夜精品一区二区三区三上悠亚| 亚洲欧美经典视频| 国产精品国产三级国产aⅴ入口| 久久人人97超碰com| 日韩欧美亚洲另类制服综合在线| 欧美日韩精品福利| 欧美无人高清视频在线观看| 99精品欧美一区二区三区小说| 国产乱人伦偷精品视频不卡| 激情偷乱视频一区二区三区| 日本午夜一本久久久综合| 午夜视频在线观看一区二区三区| 亚洲欧美二区三区| 亚洲女同ⅹxx女同tv| 中文字幕在线不卡一区| 国产精品久久久久一区 | 久久先锋影音av| 精品久久久久一区| 精品国产露脸精彩对白| 久久综合久久久久88| 精品国产区一区| 精品噜噜噜噜久久久久久久久试看 | 一区二区在线观看不卡| 中文字幕av一区 二区| 欧美国产精品中文字幕| 亚洲国产精品成人久久综合一区| 国产人久久人人人人爽| 中文字幕va一区二区三区| 国产精品初高中害羞小美女文| 久久久不卡网国产精品二区| 久久久久久久久久久久电影| 国产日韩欧美综合在线| 国产精品无码永久免费888| 中文字幕一区av| 最新不卡av在线| 一区二区三区久久久| 午夜成人免费电影| 看电视剧不卡顿的网站| 国产精品一区二区黑丝| 久久新电视剧免费观看| 中文字幕不卡的av| 一区二区成人在线视频| 日韩av在线播放中文字幕| 久久狠狠亚洲综合| 成人三级在线视频| 在线观看www91| 在线不卡一区二区| 久久久久久99久久久精品网站| 日本一区二区三区免费乱视频| 亚洲三级电影全部在线观看高清| 一区二区三区日韩欧美精品| 日韩精品午夜视频| 国产精品18久久久久久久网站| 成人污污视频在线观看| 欧美性感一类影片在线播放| 日韩精品专区在线| 成人免费一区二区三区视频 | 欧美视频三区在线播放| 久久这里只有精品6| 亚洲精品五月天| 久久成人免费网| 91福利视频在线| 日韩美女视频一区二区在线观看| 国产精品久久久久三级| 日韩va亚洲va欧美va久久| 国产大陆a不卡| 7777精品久久久大香线蕉| 国产三级精品在线| 亚洲成av人片www| 国产成人免费在线观看不卡| 欧美日韩一级二级| 国产欧美一区二区精品秋霞影院| 性做久久久久久免费观看| 国产精品一级在线| 51精品秘密在线观看| 亚洲同性gay激情无套| 国产一区二区三区最好精华液| 91成人在线观看喷潮| 国产亚洲一区二区在线观看| 日韩和欧美一区二区三区| 99精品视频一区二区| www激情久久| 午夜久久久久久久久久一区二区| www..com久久爱| 在线播放中文一区| 亚洲精品一二三四区| 国产电影一区在线| 日韩欧美色综合网站| 午夜视黄欧洲亚洲| 色综合中文字幕| 国产精品美女久久久久久久网站| 美女网站色91| 337p亚洲精品色噜噜| 亚洲你懂的在线视频| 不卡视频免费播放| 国产婷婷一区二区| 国产乱人伦偷精品视频免下载| 日韩欧美成人一区二区| 五月激情综合色| 欧美色男人天堂| 一区二区三区免费在线观看| av中文字幕在线不卡| 中文字幕av不卡| 国产福利电影一区二区三区| 欧美精品一区二区不卡| 免费观看在线色综合| 欧美美女直播网站| 亚洲电影第三页| 欧美性感一类影片在线播放| 亚洲制服丝袜av| 色狠狠桃花综合| 亚洲一级不卡视频| 在线视频欧美区| 一区二区三区国产| 色欧美88888久久久久久影院| 亚洲三级视频在线观看| 波多野结衣一区二区三区| 国产无一区二区| 成人一二三区视频| 中日韩av电影| av中文字幕一区| 一区二区三区成人| 欧美性生活影院| 日本亚洲三级在线| 精品久久久久久久久久久久久久久 | 精品剧情在线观看| 国产综合一区二区| 久久久久久久久蜜桃| 成人午夜在线视频| 亚洲图片你懂的| 欧美三级中文字| 日本亚洲电影天堂| 国产午夜亚洲精品理论片色戒| 国产盗摄一区二区| 亚洲精品中文在线| 欧美精品丝袜久久久中文字幕| 麻豆国产欧美一区二区三区| 国产欧美一区二区精品婷婷| 99精品国产99久久久久久白柏| 亚洲一区二区三区四区在线免费观看| 欧美日韩国产综合久久| 久久99国产精品免费网站| 国产嫩草影院久久久久| 91久久精品国产91性色tv| 丝袜亚洲另类欧美综合| 久久久美女艺术照精彩视频福利播放| 北岛玲一区二区三区四区| 亚洲国产精品精华液网站| 日韩限制级电影在线观看| 国产成人免费在线观看不卡| 亚洲另类中文字| 日韩欧美综合一区| 成人久久久精品乱码一区二区三区| 亚洲三级小视频| 日韩精品中午字幕| 91在线免费播放| 青青草国产精品亚洲专区无| 久久久精品综合| 欧美三区免费完整视频在线观看| 国产在线视频不卡二| 亚洲欧美一区二区三区久本道91| 7777精品伊人久久久大香线蕉经典版下载 | 狠狠网亚洲精品| 亚洲乱码国产乱码精品精小说| 日韩一区二区电影| 97国产一区二区| 久久国产欧美日韩精品| 亚洲视频你懂的| 精品日韩欧美在线| 色av成人天堂桃色av| 国产一区二区日韩精品| 亚洲一区二区在线观看视频| 国产校园另类小说区| 欧美精品三级日韩久久| 成人晚上爱看视频| 久热成人在线视频| 亚洲在线成人精品| 国产精品美女www爽爽爽| 欧美一区二区三区在线电影| 色综合视频一区二区三区高清| 国产一区二区三区精品视频|