亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? paper.tex

?? 國(guó)外免費(fèi)地震資料處理軟件包
?? TEX
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
can sum to a constantif the spacing is such that the midpoint of one triangleis at the beginning of the next.I imagined in two dimensions that something similar would happenwith shapes like Egyptian pyramids of Cheops, $2-|x-y|+|x+y|$.Instead,the equation $(1-|x|)(1-|y|)$which has the tent-like shape shownin Figure~\ref{fig:wind0wt}adds up to the constant flat top shown in Figure~\ref{fig:wall0wt}.(To add interest to Figure~\ref{fig:wall0wt},I separated the windows by a little more than the precise matching distance.)In practice we may chose window shapes and overlaps forreasons other than the constancy of the sum of weights,because \texttt{mkwallwt} \vpageref{lst:mkwallwt} accounts for that.\sideplot{wall1wt}{width=3.00in}{  (Inverse) wall weights with  {\tt n1=100, w1=61, k1=2, n2=30, w2=19, k2=2 }}%\par%Inserting the calls to internal convolution \GPROG{CHANGED cvi2} %and \GPROG{tent2}%into \GPROG{idempatch} gives the subroutine%\GPROG{cinloip}%that does the time and space variable filtering%by invariant filtering in patches.%(Grumbling about computer languages commented out here).%%(Subroutine {\tt cinloip()}, filtering in patches, is commented out here.%I don't know if I never use filtering in patches or whether%I have some other program that does this job.)%\par%The basic rule of computer program management is that we should%have no duplicated code.%Otherwise improvements might be made to one copy but not the other,%and inconsistency could grow.%It is an aggravation to me,%and a defect in the Fortran language%that I must present to you two copies of nearly identical code,%\GPROG{idempatch} and \GPROG{cinloip},%and when you or I prepare the next application,%we cannot link this code from a library,%but we will need to create another copy%changing the call to {\tt ident()} to a call to our next%application subroutine.%I plan to study the possibility of using interlude subroutines%that pick up the required variables through common%and the use of other languages.\parFinally is an exampleof filtering a plane of uniform constants with an impulse function.The impulse function is surrounded by zeros,so the filter output patches are smaller than the input patches back in Figure~\ref{fig:idempatch}.Here in Figure~\ref{fig:cinloip},both axes need more window density.\sideplot{cinloip}{width=3.00in}{  Filtering in patches Mid  with the same parameters  as in Figures~\protect\ref{fig:parcel} and~\protect\ref{fig:idempatch}.  Additionally, the filter parameters are  { \tt     a1=11   a2=5    lag1=6  lag2=1  }.  Thus, windows are centered on the 1-axis and  pushed back out the 2-axis.}%\progdex{cinloip}{patch and filter}\subsection{Designing a separate filter for each patch}Recall the prediction-error filter subroutine \texttt{find\_pef()} \vpageref{lst:pef}.Given a data plane, this subroutine finds a filter that tendsto whiten the spectrum of that data plane.The output is white residual.Now suppose we have a data plane where the dip spectrumis changing from place to place.Here it is natural to apply subroutine {\tt find\_pef()} in local patches.This is done by subroutine \texttt{find\_lopef()}. The output of this subroutine is an array of helix-type filters,which can be used, for example,in a local convolution operator\texttt{loconvol} \vpageref{lst:loconvol}.\moddex{lopef}{local PEF}{61}{85}{user/gee}We notice that when a patch has fewer regression equationsthan the filter has coefficients, then the filter is takento be that of the previous patch.\opdex{loconvol}{local convolution}{27}{42}{user/gee}\par\subsection{Triangular patches}\sx{patch ! triangular}I have been running patching code for several yearsand my first general comment is that realistic applicationsoften call for patches of different sizes and different shapes.(Tutorial, non-interactive C code is poorly suited to this need.)Raw seismic data in particular seems more suited to triangular shapes.It is worth noting that the basic concepts in this chapterhave ready extension to other shapes.For example,a rectangular shape could be duplicated into two identical patches;then data in one could be zeroed above the diagonaland in the other below;you would have to allow, of course, for overlap the size of the filter.Module \texttt{pef} \vpageref{lst:pef} automatically ignores the zeroed portionof the triangle,and it is irrelevant what \texttt{mis2()} \vpageref{lst:mis2}does with a zeroed portion of data,if a triangular footprint of weights is designed to ignore its output.\begin{exer}\item        Code the linear operator        $ \bold W_{\rm wall} \bold P' \bold W_{\rm wind} \bold P $        including its adjoint.%       (Note: It is cheating to search around the CD-ROM for subroutine {\tt idempatch()}).\item        {\bf Smoothing program.}        Some familiar operations can be seen in a new light when done in patches.        Patch the data.        In each patch,        find the mean value.        Replace each value by the mean value.        Reconstruct the wall.\item        {\bf Smoothing while filling missing data.}        This is like smoothing,        but you set window weights to zero where there is no data.        Because there will be a        different set of weights in each window,        you will need to make a simple generalization to \texttt{mkwallwt} \vpageref{lst:mkwallwt}.\item        {\bf Gain control.}        Divide the data into patches.        Compute the square root of the sum of the squares        of all the data in each patch.        Divide all values in that patch by this amount.        Reassemble patches.\end{exer}\section{STEEP-DIP DECON}\sx{steep dip decon}\sx{deconvolution ! steep dip}\parNormally,whenan autoregression filter (PEF) predictsa value at a point it uses values at earlier points.In practice,a gap may also be set between the predicted valueand the earlier values.What is not normally done is to supplement the fittingsignals on nearby traces.That is what we do here.We allow the prediction of a signal to include nearby signalsat earlier times.The times accepted in the goal are inside a triangle of velocityless than about the water velocity.The new information allowed in the predictionis extremely valuable for water-velocity events.Wavefronts are especially predictablewhen we can view them along the wavefront(compared to perpendicular or at some other angle from the wavefront).It is even better on land,where noises move more slowly at irregular velocities,and are more likely to be aliased.\parUsing \texttt{lopef} \vpageref{lst:lopef},the overall process proceeds independentlyin each of many overlapping windows.The most important practical aspect is the filter masks, described next.\subsection{Dip rejecting known-velocity waves}\sx{dip reject}Consider the two-dimensional filter\begin{equation}   \begin{array}{rrr}      \     & +1 & \     \\        -1  &  0 &  -1   \\      \     & +1 & \           \end{array}\end{equation}\noindentWhen this this filter is applied to a field profilewith 4 ms time sampling and 6 m trace spacing,it should perfectly extinguish1.5 km/s water-velocity noises.Likewise, the filter\begin{equation}   \begin{array}{rrr}      \  &  +1  &  \    \\      \  &   0  &  \    \\      \  &   0  &  \    \\      -1 &   0  &  -1   \\      \  &   0  &  \    \\      \  &   0  &  \    \\      \  &  +1  &  \         \end{array}\end{equation}%{\samepage%\begin{verbatim}%                  +1%                   0%                   0%               -1  0 -1%                   0%                   0%                  +1%\end{verbatim}%}\noindentshould perfectly extinguish water noisewhen the trace spacing is 18 m.Such noise is, of course, spatially aliasedfor all temporal frequencies above 1/3 of Nyquist,but that does not matter.The filter extinguishes them perfectly anyway.Inevitably, the filter cannot both extinguish the noiseand leave the signal untouched where the alias of one is equal to the other.So we expect the signal to be altered where it matches aliased noise.This simple filter does worse than that.On horizontal layers, for example,signal wavelets become filtered by $(1,0,0,-2,0,0,1)$.If the noise is overwhelming,this signal distortion is a small price to payfor eliminating it.If the noise is tiny, however, the distortion is unforgivable.In the real world,data-adaptive deconvolution is usually a good compromise.\parThe two-dimensional deconvolutions filterswe explore herelook like this:\begin{equation}   \begin{array}{ccccccccc}                 x& x& x& x& x& x& x& x& x \\                 x& x& x& x& x& x& x& x& x \\                 .& x& x& x& x& x& x& x& . \\                 .& x& x& x& x& x& x& x& . \\                 .& x& x& x& x& x& x& x& . \\                 .& .& x& x& x& x& x& .& . \\                 .& .& x& x& x& x& x& .& . \\                 .& .& x& x& x& x& x& .& . \\                 .& .& .& x& x& x& .& .& . \\                 .& .& .& x& x& x& .& .& . \\                 .& .& .& x& x& x& .& .& . \\                 .& .& .& .& .& .& .& .& . \\                 .& .& .& .& .& .& .& .& . \\                 .& .& .& .& .& .& .& .& . \\                 .& .& .& .& 1& .& .& .& .      \end{array}\end{equation}%\begin{verbatim}%                 x  x  x  x  x  x  x  x  x%                 x  x  x  x  x  x  x  x  x%                 .  x  x  x  x  x  x  x  .%                 .  x  x  x  x  x  x  x  .%                 .  x  x  x  x  x  x  x  .%                 .  .  x  x  x  x  x  .  .%                 .  .  x  x  x  x  x  .  .%                 .  .  x  x  x  x  x  .  .%                 .  .  .  x  x  x  .  .  .%                 .  .  .  x  x  x  .  .  .%                 .  .  .  x  x  x  .  .  .%                 .  .  .  .  .  .  .  .  .%                 .  .  .  .  .  .  .  .  .%                 .  .  .  .  .  .  .  .  .%                 .  .  .  .  1  .  .  .  .%\end{verbatim}\noindentwhere each $.$ denotes a zero and each$x$ denotes a (different) adjustable filter coefficientthat is chosen to minimize the power out.\parYou can easily imagine variations on this shape,such as a diamond instead of a triangle.I invite you to experiment with the various shapes that suggest themselves.\subsection{Tests of steep-dip decon on field data}\inputdir{mideast}\parLow-velocity noises on shot recordsare often not fully suppressed by stackingbecause the noises are spatially aliased.Routine field arrays are not perfectand the noise is often extremely strong.An interesting, recently-arrived data setworth testing is shown in Figure \ref{fig:gravel2D}.\plot{gravel2D}{height=4.0in,width=6in}{  Gravel plain ground roll (Middle East)  Worth testing.}\parI scanned the forty \bx{Yilmaz} and \bx{Cumro} shot profilesfor strong low-velocity noises and I selected six examples.To each I applied an AGC that is a slow function of time and space(triangle smoothing windows with triangle half-widths of 200time points and 4 channels).Because my process simultaneously doesboth low-velocity rejection and deconvolution,I prepared more traditional 1-D deconvolutions for comparison.This is done in windows of 250 time points and 25 channels,the same filter being used for each of the 25 channels in the window.In practice, of course, considerably more thought would be givento optimal window sizes as a function of the regional nature of the data.The windows were overlapped by about 50\%.The same windows are used on the steep-dip deconvolution.\inputdir{steep}\parIt turned out to be much easier than expectedand on the first tryI got good results on all all six field profiles tested.I have not yet tweaked the many adjustable parameters.As you inspect thesedeconvolved profiles from different areas of the worldwith different recording methods, land and marine,think about how the stacks should be improved by the deconvolution.Stanford Exploration Project report 77 (SEP-77) shows the full suite of results.Figure~\ref{fig:wz} is a sample of them.\plot{wz}{width=7in,height=8.0in}{  Top is a North African vibrator shot profile (Y\&C \#10) after AGC.  Middle is gapped 1-D decon.  Bottom is steep-dip decon.}%\ACTIVEPLOT{wz.25}{width=7in,height=8.0in}{steep}{%       Bottom is an Alberta dynamite shot profile (Y\&C \#25) after AGC.%       Middle is gapped 1-D decon.  Top is steep-dip decon.%       }%\ACTIVEPLOT{wz.31}{width=7in,height=8.0in}{steep}{%       Bottom is a North Sea air gun shot profile (Y\&C \#30) after AGC.%       Middle is gapped 1-D decon.  Top is steep-dip decon.%       }%\ACTIVEPLOT{wz.32}{width=7in,height=8.0in}{steep}{%       Bottom is a North Sea air gun shot profile (Y\&C \#31) after AGC.%       Middle is gapped 1-D decon.  Top is steep-dip decon.%       }%\ACTIVEPLOT{wz.39}{width=7in,height=8.0in}{steep}{

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩天堂在线观看| 欧美mv日韩mv亚洲| 在线观看一区日韩| 日本高清不卡aⅴ免费网站| av一区二区久久| 99久久99久久综合| 色系网站成人免费| 欧洲精品在线观看| 欧美日韩国产三级| 91精品国产品国语在线不卡| 91麻豆精品国产91久久久使用方法 | 欧美色图天堂网| 欧美图区在线视频| 欧美精选午夜久久久乱码6080| 欧美浪妇xxxx高跟鞋交| 91精品国产综合久久婷婷香蕉| 欧美一卡在线观看| 日韩欧美中文字幕一区| 久久新电视剧免费观看| 国产视频在线观看一区二区三区 | 亚洲一区在线视频观看| 日韩一区精品字幕| 首页国产丝袜综合| 久久成人久久鬼色| 精品三级av在线| 国产情人综合久久777777| 国产精品久久久久久久久搜平片| 亚洲欧美日韩在线播放| 午夜日韩在线观看| 国产麻豆精品在线| 97精品久久久午夜一区二区三区| 欧美日韩美少妇| 精品欧美久久久| 国产精品久久影院| 视频精品一区二区| 国产精品亚洲а∨天堂免在线| 91亚洲男人天堂| 日韩亚洲电影在线| 亚洲国产岛国毛片在线| 午夜欧美大尺度福利影院在线看 | 精品视频一区二区不卡| 欧美变态tickling挠脚心| 国产精品黄色在线观看| 日本欧美久久久久免费播放网| 国产在线不卡一卡二卡三卡四卡| av在线不卡电影| 欧美一区二区啪啪| 国产精品美女久久久久久久久久久| 亚洲成人一区二区| 国产不卡视频在线播放| 欧美日本一区二区三区| 欧美激情一区二区三区四区| 亚洲国产精品影院| 国产成人福利片| 亚洲免费观看在线观看| 精品亚洲成a人在线观看| 日本韩国一区二区三区| 久久一区二区三区四区| 亚洲午夜久久久| 国产成人综合在线播放| 宅男噜噜噜66一区二区66| 亚洲人精品午夜| 国产精品18久久久| 欧美一卡2卡3卡4卡| 亚洲激情图片小说视频| 国产成人精品影视| 日韩欧美国产一区二区三区 | 不卡的av中国片| 精品久久久久99| 亚洲va欧美va人人爽午夜| k8久久久一区二区三区| 日韩一卡二卡三卡| 亚洲va韩国va欧美va精品| 97se亚洲国产综合自在线 | 亚洲五码中文字幕| av中文字幕不卡| 国产日本欧美一区二区| 韩国在线一区二区| 欧美一区二区久久久| 亚洲一区二区四区蜜桃| 91老司机福利 在线| 欧美精彩视频一区二区三区| 麻豆91免费观看| 日韩一区二区免费电影| 日韩精品免费视频人成| 精品视频一区二区不卡| 亚洲午夜免费电影| 色哟哟一区二区在线观看 | 国产毛片一区二区| 日韩欧美综合一区| 日韩电影免费在线| 欧美三级韩国三级日本一级| 亚洲精品国产高清久久伦理二区| 成人精品视频一区二区三区| 久久久久久久久97黄色工厂| 极品瑜伽女神91| 欧美成人综合网站| 男人的天堂久久精品| 在线播放中文字幕一区| 午夜精品久久久久久不卡8050| 91福利国产精品| 亚洲一区二区三区视频在线| 欧美亚洲图片小说| 亚洲国产日韩一级| 国产精品久久久久一区| proumb性欧美在线观看| 亚洲视频一区二区在线| 色诱亚洲精品久久久久久| 亚洲毛片av在线| 欧美日韩免费在线视频| 天堂一区二区在线| 欧美一卡二卡在线| 国内精品伊人久久久久av一坑| 久久综合网色—综合色88| 国产一区二区按摩在线观看| 国产欧美一区二区精品忘忧草 | 欧美日韩在线免费视频| 午夜精品视频一区| 日韩一区二区免费高清| 国产成人综合在线观看| 国产精品福利av| 欧美丝袜丝交足nylons| 免费观看在线综合色| 久久久天堂av| 成人动漫一区二区三区| 一区二区三区在线不卡| 欧美日韩国产综合一区二区三区| 美女视频一区在线观看| 久久久国产精品麻豆| 91丨porny丨国产入口| 亚洲国产精品尤物yw在线观看| 91精品国产综合久久久久久| 国产在线播放一区| 中文字幕一区在线| 欧美日韩一本到| 国产又粗又猛又爽又黄91精品| 中文字幕国产一区| 欧美日韩夫妻久久| 韩国v欧美v日本v亚洲v| 自拍偷拍亚洲激情| 欧美日韩国产片| 福利一区二区在线| 亚洲一卡二卡三卡四卡五卡| 欧美一区二区私人影院日本| 国产成人精品一区二| 亚洲香肠在线观看| 久久综合久色欧美综合狠狠| 99r精品视频| 麻豆精品在线看| 亚洲男女一区二区三区| 欧美电影免费观看完整版| 91无套直看片红桃| 精品午夜久久福利影院| 亚洲一线二线三线久久久| 久久久www成人免费无遮挡大片| 91传媒视频在线播放| 欧美日韩国产综合一区二区三区| 国产盗摄一区二区| 天堂va蜜桃一区二区三区 | 亚洲高清在线精品| 国产精品污网站| 日韩午夜激情视频| 在线视频观看一区| 国产成人免费在线| 秋霞av亚洲一区二区三| 专区另类欧美日韩| 久久久久亚洲蜜桃| 欧美高清视频在线高清观看mv色露露十八| 国产精品小仙女| 美女视频免费一区| 午夜影院久久久| 中文字幕一区二区三区不卡| 精品成人私密视频| 欧美裸体bbwbbwbbw| 91色婷婷久久久久合中文| 国产一区二区三区电影在线观看 | 国产在线精品不卡| 日本va欧美va欧美va精品| 亚洲男同1069视频| 国产精品女人毛片| 久久午夜羞羞影院免费观看| 欧美精品粉嫩高潮一区二区| 色婷婷久久一区二区三区麻豆| 国产99久久久久| 国产乱码精品一品二品| 久久99久久精品| 蜜臀av性久久久久蜜臀aⅴ流畅| 亚洲高清中文字幕| 亚洲综合在线第一页| 亚洲色图另类专区| 亚洲欧美在线高清| 中文字幕精品—区二区四季| 久久久www免费人成精品| 日韩精品在线一区| 日韩亚洲欧美综合| 91精品国产综合久久福利软件| 欧美丝袜第三区| 欧美日韩国产系列| 欧美另类z0zxhd电影| 欧美日韩精品免费观看视频|