亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? paper.tex

?? 國(guó)外免費(fèi)地震資料處理軟件包
?? TEX
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
% copyright (c) 1997 Jon Claerbout\long\def\HIDE#1{#1}\title{Multidimensional autoregression}\author{Jon Claerbout}\maketitle\label{paper:mda}        The many applications of least squares        to the one-dimensional convolution operator        constitute the subject known as ``\bx{time-series analysis}.''        The {\it \bx{autoregression}} filter,        also known as the \bx{prediction-error filter} (\bx{PEF}),        gathers statistics for us,        not the autocorrelation or the spectrum directly        but it gathers them indirectly        as the inverse of the amplitude spectrum of its input.        The PEF plays the role of the so-called        ``inverse-covariance matrix'' in statistical estimation theory.        Given the PEF, we use it to find missing portions of signals.%Here we examine applications of time-series analysis to reflection seismograms.%These applications further illuminate the theory of least squares%in the area of \bx{weighting function}s and stabilization.%\HIDE{\subsection{Time domain versus frequency domain}\parIn the simplest applications, solutions can be most easily foundin the frequency domain.When complications arise,it is better to use the time domain,to directly apply the convolution operatorand the method of least squares.\parA first complicating factor in the frequency domain is a required boundaryin the time domain, such as that between past and future,or requirements that a filter be nonzero in a stated time interval.Another factor that attracts us to the time domainrather than the frequency domain is \bx{weighting function}s.\parWeighting functionsare appropriate whenever a signal or image amplitude variesfrom place to place.Much of the literature on \bx{time-series analysis}applies to the limited case of uniform weighting functions.Such time series are said to be ``stationary.''This means that their statistical properties do not change in time.In real life, particularly in the analysis of echos,signals are never stationary in time and space.A \bx{stationarity} assumption is a reasonable starting assumption,but we should know how to go beyond itso we can take advantage of the many opportunities that do arise.In order of increasing difficulty in the frequency domain arethe following complications:\begin{enumerate}\item A time boundary such as between past and future.\item More time boundaries such as delimiting a filter.\item More time boundaries such as erratic locations of missing data.\item Nonstationary signal, i.e., time-variable weighting.\item Time-axis stretching such as normal moveout.\end{enumerate}\parWe will not have difficulty with any of these complications here,because we will stay in the time domainand set up and solve optimization problems by use ofthe conjugate-direction method.Thus we will be able to cope with great complexity in goal formulationand get the right answer without approximations.By contrast, analytic or partly analytic methodscan be more economical, but they generally solvesomewhat different problems than those given to us by nature.\section{SOURCE WAVEFORM, MULTIPLE REFLECTIONS}\sx{source waveform}\sx{multiple reflection}Here we devise a simple mathematical modelfor deep \bx{water bottom} multiple reflections.\footnote{                For this short course I am omitting here many interesting                examples of multiple reflections                shown in my 1992 book, PVI.                }There are two unknown waveforms,the source waveform $S(\omega )$and the ocean-floor reflection $F(\omega )$.The water-bottom primary reflection $P(\omega )$is the convolution of the source waveformwith the water-bottom response; so $P(\omega )=S(\omega )F(\omega )$.The first multiple reflection $M(\omega )$ sees the same source waveform,the ocean floor, a minus one for the free surface, and the ocean floor again.Thus the observations $P(\omega )$ and $M(\omega )$as functions of the physical parameters are\begin{eqnarray}P(\omega )&=&S(\omega )\,F(\omega )      \label{eqn:PP} \\M(\omega )&=&-S(\omega )\,F(\omega )^2   \label{eqn:MM}\end{eqnarray}Algebraically the solutions of equations(\ref{eqn:PP}) and(\ref{eqn:MM}) are\begin{eqnarray}F(\omega )&=& - M(\omega )/P(\omega )   \label{eqn:FF} \\S(\omega )&=& - P(\omega )^2/M(\omega ) \label{eqn:SS}\end{eqnarray}\parThese solutions can be computed in the Fourier domainby simple division.The difficulty is that the divisors inequations~(\ref{eqn:FF}) and~(\ref{eqn:SS})can be zero, or small.This difficulty can be attacked by use of a positive number $\epsilon$to \bx{stabilize} it.For example, multiply equation~(\ref{eqn:FF}) on top and bottomby $P'(\omega )$ and add $\epsilon >0$ to the denominator.This gives\begin{equation}F(\omega )\eq- \ {M(\omega ) P'(\omega ) \over P(\omega )P'(\omega ) + \epsilon}\label{eqn:epsilon}\end{equation}where $ P'(\omega )$ is the complex conjugate of $P(\omega )$.Although the $\epsilon$ stabilization seems nice,it apparently produces a nonphysical model.For $\epsilon$ large or small, the time-domain responsecould turn out to be of much greater duration than is physically reasonable. This should not happen with perfect data, but in real life,data always has a limited spectral band of good quality.\parFunctions that are rough in the frequency domain will be long inthe time domain. This suggests making a short function in the time domainby local smoothing in the frequency domain.Let the notation $< \cdots >$ denote smoothing by local averaging.Thus,to specify filters whose time duration is not unreasonably long,we can revise equation~(\ref{eqn:epsilon}) to\begin{equation}F(\omega )\eq- \ {<M(\omega ) P'(\omega )> \over <P(\omega )P'(\omega )  >}\label{eqn:smoothit}\end{equation}whereinstead of deciding a size for $\epsilon$ we need to decide how much smoothing.I find that smoothing has a simpler physical interpretation than choosing $\epsilon$.The goal of finding the filters $F(\omega )$ and $S(\omega )$ is tobest model the multiple reflections so that they canbe subtracted from the data,and thus enable us to see what primary reflectionshave been hidden by the multiples.\parThese frequency-duration difficulties do not arise in a time-domain formulation.Unlike in the frequency domain,in the time domain it is easy and naturalto limit the duration and locationof the nonzero time range of $F(\omega)$ and $S(\omega)$.First express(\ref{eqn:FF}) as\begin{equation}0 \eq P(\omega )F(\omega ) +M(\omega )  \label{eqn:floor}\end{equation}\parTo imagine equation (\ref{eqn:floor})as a fitting goal in the time domain,instead of scalar functions of $\omega$,think of vectors with components as a function of time.Thus $\bold f$ is a column vectorcontaining the unknown sea-floor filter,$\bold m$ contains the ``multiple'' portion of a seismogram,and $\bold P$ is a matrix of down-shifted columns,each column being the ``primary''.\begin{equation}\bold 0 \quad\approx\quad\bold r \eq\left[\begin{array}{c}  r_1 \\  r_2 \\  r_3 \\  r_4 \\  r_5 \\  r_6 \\  r_7 \\  r_8  \end{array} \right]  \eq\left[\begin{array}{ccc}  p_1 & 0   & 0    \\  p_2 & p_1 & 0    \\  p_3 & p_2 & p_1  \\  p_4 & p_3 & p_2  \\  p_5 & p_4 & p_3  \\  p_6 & p_5 & p_4  \\  0   & p_6 & p_5  \\  0   & 0   & p_6  \end{array} \right]\; \left[\begin{array}{c}  f_1 \\  f_2 \\  f_3 \end{array} \right]\ +\ \left[\begin{array}{c}  m_1 \\  m_2 \\  m_3 \\  m_4 \\  m_5 \\  m_6 \\  m_7 \\  m_8  \end{array} \right]\label{eqn:findmult}\end{equation}%\par%To minimize $\bold r'\bold r$,%we could use the conjugate-direction subroutine \texttt{cgmeth()} \vpageref{lst:cgmeth},%but we would remove its call to%the matrix multiply subroutine%and replace it by a convolution subroutine%with boundary conditions of our choice.%%}% end HIDE\section{TIME-SERIES AUTOREGRESSION}Given $y_t$ and $y_{t-1}$, you might like to predict $y_{t+1}$.The prediction could be a scaled sum or differenceof $y_t$ and $y_{t-1}$.This is called ``\bx{autoregression}''because a signal is regressed on itself.To find the scale factors you would optimize the fitting goal below,for the \bx{prediction filter} $(f_1,f_2)$:\sx{filter ! prediction}\begin{equation}\bold 0\quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_1 & y_0 \\  y_2 & y_1  \\  y_3 & y_2  \\  y_4 & y_3  \\  y_5 & y_4  \end{array} \right] \; \left[ \begin{array}{c}  f_1 \\   f_2 \end{array} \right]\ -\ \left[ \begin{array}{c}  y_2 \\   y_3 \\   y_4 \\   y_5 \\   y_6 \end{array} \right]   \label{eqn:simplepe}\end{equation}(In practice, of course the system of equations would bemuch taller, and perhaps somewhat wider.)A typical row in the matrix (\ref{eqn:simplepe})says that $y_{t+1} \approx y_t f_1 + y_{t-1} f_2$hence the description of $f$ as a ``prediction'' filter.The error in the prediction is simply the residual.Define the residual to have opposite polarityand merge the column vector into the matrix, so you get\begin{equation}\left[ \begin{array}{c}  0 \\   0 \\   0 \\   0 \\   0 \end{array} \right] \quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_2 & y_1 & y_0 \\  y_3 & y_2 & y_1  \\  y_4 & y_3 & y_2  \\  y_5 & y_4 & y_3  \\  y_6 & y_5 & y_4  \end{array} \right] \; \left[ \begin{array}{c}  1 \\   -f_1 \\   -f_2 \end{array} \right]  \label{eqn:simplepef}\end{equation}which is a standard form for autoregressions and prediction error.\par\bxbx{Multiple reflections}{multiple reflection}are predictable.It is the unpredictable part of a signal,the prediction residual,that contains the primary information.The output of the filter$(1,-f_1, -f_2) = (a_0, a_1, a_2)$is the unpredictable part of the input.This filter is a simple example ofa ``prediction-error'' (PE) filter.\sx{prediction-error filter}\sx{filter ! prediction-error}It is one member of a family of filters called ``error filters.''\parThe error-filter family are filters with one coefficient constrainedto be unity and various other coefficients constrained to be zero.Otherwise, the filter coefficients are chosen to have minimum power output.Names for various error filters follow:\begin{tabular}{ll}  $(1, a_1,a_2,a_3, \cdots ,a_n)$  &  \bxbx{prediction-error (PE) filter}{prediction-error filter}    \\  $(1, 0, 0, a_3,a_4,\cdots ,a_n)$ &  gapped PE filter with a gap \\  $(a_{-m}, \cdots, a_{-2}, a_{-1}, 1, a_1, a_2, a_3, \cdots ,a_n)$ &  \bxbx{interpolation-error (IE) filter}{interpolation-error filter}\end{tabular}\sx{filter ! prediction-error}\sx{filter ! interpolation-error}\par%\begin{notforlecture}We introduce a\bx{free-mask matrix} $\bold K$which ``passes'' the freely variable coefficients in the filterand ``rejects'' the constrained coefficients(which in this first example is merely the first coefficient $a_0=1$).\begin{equation}\bold K \eq\left[\begin{array}{cccccc}  0   & .   & .    \\  .   & 1   & .    \\  .   & .   & 1      \end{array} \right]\label{eqn:pefconstraint}\end{equation}\parTo compute a simple prediction error filter $\bold a =(1, a_1, a_2)$with the CD method,we write(\ref{eqn:simplepe}) or(\ref{eqn:simplepef}) as\begin{equation}\bold 0\quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_2 & y_1 & y_0 \\  y_3 & y_2 & y_1  \\  y_4 & y_3 & y_2  \\  y_5 & y_4 & y_3  \\  y_6 & y_5 & y_4  \end{array} \right] \;\left[ \begin{array}{ccc}    0   & \cdot & \cdot \\  \cdot &   1   & \cdot \\  \cdot & \cdot &   1     \end{array} \right] \;\left[ 

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品福利在线导航| 日韩欧美一区在线| 蜜臀a∨国产成人精品| 国产精品无遮挡| 51精品国自产在线| 91论坛在线播放| 精品一区二区国语对白| 亚洲一级二级在线| 国产精品水嫩水嫩| 精品精品欲导航| 欧美在线你懂得| 99re这里只有精品首页| 国产一区视频网站| 人禽交欧美网站| 一区二区三区四区激情| 国产精品欧美极品| 久久久国产精华| 欧美精品久久久久久久多人混战 | 国产成人精品影视| 日韩精品成人一区二区三区| 亚洲日本免费电影| 中文在线一区二区| 欧美韩国日本一区| ●精品国产综合乱码久久久久| 日韩一区二区三区高清免费看看| 欧美最猛性xxxxx直播| 色婷婷久久久久swag精品| 成人性生交大片免费看视频在线 | 99精品国产99久久久久久白柏 | 奇米精品一区二区三区四区| 亚洲激情六月丁香| 国产精品二区一区二区aⅴ污介绍| 久久综合九色欧美综合狠狠| 日韩精品最新网址| 日韩欧美视频在线 | 国产精品免费丝袜| 国产欧美精品在线观看| 久久免费视频一区| 国产日韩欧美精品综合| 国产喂奶挤奶一区二区三区| 久久亚区不卡日本| 国产婷婷精品av在线| 国产亚洲精品aa午夜观看| 久久精品亚洲国产奇米99 | 亚洲电影第三页| 亚洲1区2区3区4区| 视频在线观看一区| 蜜臀av一区二区三区| 国模娜娜一区二区三区| 国产精品12区| www.成人网.com| 欧美视频一区在线观看| 91精品国产一区二区三区| 精品国产一区二区亚洲人成毛片 | 懂色av一区二区夜夜嗨| 成人av网在线| 欧美午夜精品理论片a级按摩| 欧美日韩国产高清一区| 91精品国产美女浴室洗澡无遮挡| 精品国产91乱码一区二区三区 | 在线观看亚洲专区| 欧美疯狂做受xxxx富婆| 2欧美一区二区三区在线观看视频| 国产亚洲欧美一级| 一区二区三区四区不卡在线| 亚洲一区二区三区不卡国产欧美| 美女在线一区二区| 成人激情免费网站| 欧美日韩午夜影院| 久久嫩草精品久久久久| 一区二区视频免费在线观看| 日韩av一二三| 国产1区2区3区精品美女| 91麻豆自制传媒国产之光| 欧美电影在哪看比较好| 亚洲国产电影在线观看| 亚洲国产日韩一级| 国产一区二区美女诱惑| 欧美视频你懂的| 久久久久一区二区三区四区| 亚洲精品国产无套在线观 | 一本色道久久综合精品竹菊| 69精品人人人人| 国产精品免费看片| 青青草国产精品亚洲专区无| 不卡av在线网| 精品久久人人做人人爱| 亚洲综合偷拍欧美一区色| 国产在线播放一区二区三区| 欧美日韩亚洲另类| 中文字幕在线观看不卡视频| 日韩电影免费在线| 91麻豆文化传媒在线观看| 久久综合狠狠综合| 亚洲一区二区欧美日韩| fc2成人免费人成在线观看播放| 4438x亚洲最大成人网| 亚洲欧美日韩成人高清在线一区| 久久99国产精品免费网站| 欧美中文字幕一区二区三区亚洲| 国产欧美一区在线| 久久精品av麻豆的观看方式| 在线观看精品一区| 国产精品久久久久国产精品日日| 麻豆一区二区在线| 欧美日韩夫妻久久| 亚洲另类色综合网站| 国产丶欧美丶日本不卡视频| 欧美一区二区性放荡片| 一区二区三区高清在线| 成人av免费在线观看| 国产视频视频一区| 久久精品二区亚洲w码| 欧美精品少妇一区二区三区| 亚洲靠逼com| 成人蜜臀av电影| 国产欧美日韩三区| 国产乱码字幕精品高清av| 精品美女在线观看| 图片区日韩欧美亚洲| 欧美色图片你懂的| 亚洲一区二区高清| 欧美三级在线播放| 亚洲制服丝袜一区| 色婷婷激情久久| 亚洲男人的天堂在线观看| 99国产欧美另类久久久精品| 国产欧美精品一区二区三区四区| 久久99精品久久久久久久久久久久 | 欧美日韩你懂的| 亚洲国产aⅴ天堂久久| 91久久国产最好的精华液| 亚洲三级在线免费观看| av动漫一区二区| 亚洲美女免费在线| 91网上在线视频| 亚洲综合在线观看视频| 欧美日韩一区视频| 婷婷丁香激情综合| 欧美一级生活片| 久久66热re国产| 久久综合九色综合欧美就去吻| 久久99热狠狠色一区二区| 精品国产a毛片| 成人免费黄色大片| 亚洲男人的天堂在线观看| 欧美中文字幕一区二区三区亚洲| 亚洲国产精品久久人人爱| 欧美日韩精品欧美日韩精品 | 成人av影视在线观看| 中文字幕在线免费不卡| 欧洲一区在线电影| 日日摸夜夜添夜夜添精品视频| 欧美一级在线免费| 国产一区免费电影| 中文字幕一区在线观看| 在线一区二区视频| 麻豆精品蜜桃视频网站| 国产女人水真多18毛片18精品视频| 成人午夜视频福利| 亚洲激情五月婷婷| 欧美电视剧免费全集观看| 成人精品电影在线观看| 亚洲国产另类av| 日韩美女主播在线视频一区二区三区| 精品一区精品二区高清| 亚洲欧洲www| 在线播放国产精品二区一二区四区| 久久精品国产**网站演员| 国产精品久久免费看| 欧美日韩亚洲综合在线| 国产自产视频一区二区三区| 中文字幕一区二区三区不卡在线| 欧美日韩一区二区三区高清| 久久66热偷产精品| 一区二区三区四区中文字幕| 日韩欧美国产综合| 99久久精品国产精品久久| 日本成人在线看| 国产精品久久毛片| 这里只有精品免费| 99视频精品在线| 日韩国产欧美三级| 亚洲日本免费电影| 2022国产精品视频| 欧美日韩亚洲综合一区二区三区| 国产精品自拍在线| 日日摸夜夜添夜夜添亚洲女人| 国产精品婷婷午夜在线观看| 5858s免费视频成人| 91麻豆国产香蕉久久精品| 国产一区二区三区蝌蚪| 亚洲一区二区中文在线| 国产喂奶挤奶一区二区三区| 69成人精品免费视频| 一本久久a久久精品亚洲| 久久国产精品一区二区| 亚洲高清一区二区三区| 国产精品视频一二三区| wwwwxxxxx欧美|