亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? paper.tex

?? 國外免費地震資料處理軟件包
?? TEX
?? 第 1 頁 / 共 5 頁
字號:
% copyright (c) 1997 Jon Claerbout\long\def\HIDE#1{#1}\title{Multidimensional autoregression}\author{Jon Claerbout}\maketitle\label{paper:mda}        The many applications of least squares        to the one-dimensional convolution operator        constitute the subject known as ``\bx{time-series analysis}.''        The {\it \bx{autoregression}} filter,        also known as the \bx{prediction-error filter} (\bx{PEF}),        gathers statistics for us,        not the autocorrelation or the spectrum directly        but it gathers them indirectly        as the inverse of the amplitude spectrum of its input.        The PEF plays the role of the so-called        ``inverse-covariance matrix'' in statistical estimation theory.        Given the PEF, we use it to find missing portions of signals.%Here we examine applications of time-series analysis to reflection seismograms.%These applications further illuminate the theory of least squares%in the area of \bx{weighting function}s and stabilization.%\HIDE{\subsection{Time domain versus frequency domain}\parIn the simplest applications, solutions can be most easily foundin the frequency domain.When complications arise,it is better to use the time domain,to directly apply the convolution operatorand the method of least squares.\parA first complicating factor in the frequency domain is a required boundaryin the time domain, such as that between past and future,or requirements that a filter be nonzero in a stated time interval.Another factor that attracts us to the time domainrather than the frequency domain is \bx{weighting function}s.\parWeighting functionsare appropriate whenever a signal or image amplitude variesfrom place to place.Much of the literature on \bx{time-series analysis}applies to the limited case of uniform weighting functions.Such time series are said to be ``stationary.''This means that their statistical properties do not change in time.In real life, particularly in the analysis of echos,signals are never stationary in time and space.A \bx{stationarity} assumption is a reasonable starting assumption,but we should know how to go beyond itso we can take advantage of the many opportunities that do arise.In order of increasing difficulty in the frequency domain arethe following complications:\begin{enumerate}\item A time boundary such as between past and future.\item More time boundaries such as delimiting a filter.\item More time boundaries such as erratic locations of missing data.\item Nonstationary signal, i.e., time-variable weighting.\item Time-axis stretching such as normal moveout.\end{enumerate}\parWe will not have difficulty with any of these complications here,because we will stay in the time domainand set up and solve optimization problems by use ofthe conjugate-direction method.Thus we will be able to cope with great complexity in goal formulationand get the right answer without approximations.By contrast, analytic or partly analytic methodscan be more economical, but they generally solvesomewhat different problems than those given to us by nature.\section{SOURCE WAVEFORM, MULTIPLE REFLECTIONS}\sx{source waveform}\sx{multiple reflection}Here we devise a simple mathematical modelfor deep \bx{water bottom} multiple reflections.\footnote{                For this short course I am omitting here many interesting                examples of multiple reflections                shown in my 1992 book, PVI.                }There are two unknown waveforms,the source waveform $S(\omega )$and the ocean-floor reflection $F(\omega )$.The water-bottom primary reflection $P(\omega )$is the convolution of the source waveformwith the water-bottom response; so $P(\omega )=S(\omega )F(\omega )$.The first multiple reflection $M(\omega )$ sees the same source waveform,the ocean floor, a minus one for the free surface, and the ocean floor again.Thus the observations $P(\omega )$ and $M(\omega )$as functions of the physical parameters are\begin{eqnarray}P(\omega )&=&S(\omega )\,F(\omega )      \label{eqn:PP} \\M(\omega )&=&-S(\omega )\,F(\omega )^2   \label{eqn:MM}\end{eqnarray}Algebraically the solutions of equations(\ref{eqn:PP}) and(\ref{eqn:MM}) are\begin{eqnarray}F(\omega )&=& - M(\omega )/P(\omega )   \label{eqn:FF} \\S(\omega )&=& - P(\omega )^2/M(\omega ) \label{eqn:SS}\end{eqnarray}\parThese solutions can be computed in the Fourier domainby simple division.The difficulty is that the divisors inequations~(\ref{eqn:FF}) and~(\ref{eqn:SS})can be zero, or small.This difficulty can be attacked by use of a positive number $\epsilon$to \bx{stabilize} it.For example, multiply equation~(\ref{eqn:FF}) on top and bottomby $P'(\omega )$ and add $\epsilon >0$ to the denominator.This gives\begin{equation}F(\omega )\eq- \ {M(\omega ) P'(\omega ) \over P(\omega )P'(\omega ) + \epsilon}\label{eqn:epsilon}\end{equation}where $ P'(\omega )$ is the complex conjugate of $P(\omega )$.Although the $\epsilon$ stabilization seems nice,it apparently produces a nonphysical model.For $\epsilon$ large or small, the time-domain responsecould turn out to be of much greater duration than is physically reasonable. This should not happen with perfect data, but in real life,data always has a limited spectral band of good quality.\parFunctions that are rough in the frequency domain will be long inthe time domain. This suggests making a short function in the time domainby local smoothing in the frequency domain.Let the notation $< \cdots >$ denote smoothing by local averaging.Thus,to specify filters whose time duration is not unreasonably long,we can revise equation~(\ref{eqn:epsilon}) to\begin{equation}F(\omega )\eq- \ {<M(\omega ) P'(\omega )> \over <P(\omega )P'(\omega )  >}\label{eqn:smoothit}\end{equation}whereinstead of deciding a size for $\epsilon$ we need to decide how much smoothing.I find that smoothing has a simpler physical interpretation than choosing $\epsilon$.The goal of finding the filters $F(\omega )$ and $S(\omega )$ is tobest model the multiple reflections so that they canbe subtracted from the data,and thus enable us to see what primary reflectionshave been hidden by the multiples.\parThese frequency-duration difficulties do not arise in a time-domain formulation.Unlike in the frequency domain,in the time domain it is easy and naturalto limit the duration and locationof the nonzero time range of $F(\omega)$ and $S(\omega)$.First express(\ref{eqn:FF}) as\begin{equation}0 \eq P(\omega )F(\omega ) +M(\omega )  \label{eqn:floor}\end{equation}\parTo imagine equation (\ref{eqn:floor})as a fitting goal in the time domain,instead of scalar functions of $\omega$,think of vectors with components as a function of time.Thus $\bold f$ is a column vectorcontaining the unknown sea-floor filter,$\bold m$ contains the ``multiple'' portion of a seismogram,and $\bold P$ is a matrix of down-shifted columns,each column being the ``primary''.\begin{equation}\bold 0 \quad\approx\quad\bold r \eq\left[\begin{array}{c}  r_1 \\  r_2 \\  r_3 \\  r_4 \\  r_5 \\  r_6 \\  r_7 \\  r_8  \end{array} \right]  \eq\left[\begin{array}{ccc}  p_1 & 0   & 0    \\  p_2 & p_1 & 0    \\  p_3 & p_2 & p_1  \\  p_4 & p_3 & p_2  \\  p_5 & p_4 & p_3  \\  p_6 & p_5 & p_4  \\  0   & p_6 & p_5  \\  0   & 0   & p_6  \end{array} \right]\; \left[\begin{array}{c}  f_1 \\  f_2 \\  f_3 \end{array} \right]\ +\ \left[\begin{array}{c}  m_1 \\  m_2 \\  m_3 \\  m_4 \\  m_5 \\  m_6 \\  m_7 \\  m_8  \end{array} \right]\label{eqn:findmult}\end{equation}%\par%To minimize $\bold r'\bold r$,%we could use the conjugate-direction subroutine \texttt{cgmeth()} \vpageref{lst:cgmeth},%but we would remove its call to%the matrix multiply subroutine%and replace it by a convolution subroutine%with boundary conditions of our choice.%%}% end HIDE\section{TIME-SERIES AUTOREGRESSION}Given $y_t$ and $y_{t-1}$, you might like to predict $y_{t+1}$.The prediction could be a scaled sum or differenceof $y_t$ and $y_{t-1}$.This is called ``\bx{autoregression}''because a signal is regressed on itself.To find the scale factors you would optimize the fitting goal below,for the \bx{prediction filter} $(f_1,f_2)$:\sx{filter ! prediction}\begin{equation}\bold 0\quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_1 & y_0 \\  y_2 & y_1  \\  y_3 & y_2  \\  y_4 & y_3  \\  y_5 & y_4  \end{array} \right] \; \left[ \begin{array}{c}  f_1 \\   f_2 \end{array} \right]\ -\ \left[ \begin{array}{c}  y_2 \\   y_3 \\   y_4 \\   y_5 \\   y_6 \end{array} \right]   \label{eqn:simplepe}\end{equation}(In practice, of course the system of equations would bemuch taller, and perhaps somewhat wider.)A typical row in the matrix (\ref{eqn:simplepe})says that $y_{t+1} \approx y_t f_1 + y_{t-1} f_2$hence the description of $f$ as a ``prediction'' filter.The error in the prediction is simply the residual.Define the residual to have opposite polarityand merge the column vector into the matrix, so you get\begin{equation}\left[ \begin{array}{c}  0 \\   0 \\   0 \\   0 \\   0 \end{array} \right] \quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_2 & y_1 & y_0 \\  y_3 & y_2 & y_1  \\  y_4 & y_3 & y_2  \\  y_5 & y_4 & y_3  \\  y_6 & y_5 & y_4  \end{array} \right] \; \left[ \begin{array}{c}  1 \\   -f_1 \\   -f_2 \end{array} \right]  \label{eqn:simplepef}\end{equation}which is a standard form for autoregressions and prediction error.\par\bxbx{Multiple reflections}{multiple reflection}are predictable.It is the unpredictable part of a signal,the prediction residual,that contains the primary information.The output of the filter$(1,-f_1, -f_2) = (a_0, a_1, a_2)$is the unpredictable part of the input.This filter is a simple example ofa ``prediction-error'' (PE) filter.\sx{prediction-error filter}\sx{filter ! prediction-error}It is one member of a family of filters called ``error filters.''\parThe error-filter family are filters with one coefficient constrainedto be unity and various other coefficients constrained to be zero.Otherwise, the filter coefficients are chosen to have minimum power output.Names for various error filters follow:\begin{tabular}{ll}  $(1, a_1,a_2,a_3, \cdots ,a_n)$  &  \bxbx{prediction-error (PE) filter}{prediction-error filter}    \\  $(1, 0, 0, a_3,a_4,\cdots ,a_n)$ &  gapped PE filter with a gap \\  $(a_{-m}, \cdots, a_{-2}, a_{-1}, 1, a_1, a_2, a_3, \cdots ,a_n)$ &  \bxbx{interpolation-error (IE) filter}{interpolation-error filter}\end{tabular}\sx{filter ! prediction-error}\sx{filter ! interpolation-error}\par%\begin{notforlecture}We introduce a\bx{free-mask matrix} $\bold K$which ``passes'' the freely variable coefficients in the filterand ``rejects'' the constrained coefficients(which in this first example is merely the first coefficient $a_0=1$).\begin{equation}\bold K \eq\left[\begin{array}{cccccc}  0   & .   & .    \\  .   & 1   & .    \\  .   & .   & 1      \end{array} \right]\label{eqn:pefconstraint}\end{equation}\parTo compute a simple prediction error filter $\bold a =(1, a_1, a_2)$with the CD method,we write(\ref{eqn:simplepe}) or(\ref{eqn:simplepef}) as\begin{equation}\bold 0\quad \approx \quad\bold r \eq\left[ \begin{array}{ccc}  y_2 & y_1 & y_0 \\  y_3 & y_2 & y_1  \\  y_4 & y_3 & y_2  \\  y_5 & y_4 & y_3  \\  y_6 & y_5 & y_4  \end{array} \right] \;\left[ \begin{array}{ccc}    0   & \cdot & \cdot \\  \cdot &   1   & \cdot \\  \cdot & \cdot &   1     \end{array} \right] \;\left[ 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品视频一区三区九区| 亚洲一级不卡视频| 中文字幕色av一区二区三区| 亚洲女同女同女同女同女同69| 亚洲综合999| 激情亚洲综合在线| 色哟哟一区二区在线观看| 欧美精品日韩精品| 欧美国产乱子伦 | 国产大陆a不卡| 91免费国产视频网站| 欧美美女一区二区在线观看| 国产亚洲欧美激情| 亚洲6080在线| 不卡的电视剧免费网站有什么| 欧美精品少妇一区二区三区| 久久久久99精品国产片| 亚洲一级片在线观看| 国产一区91精品张津瑜| 精品视频一区三区九区| 亚洲国产成人在线| 日本欧美久久久久免费播放网| 豆国产96在线|亚洲| 欧美一二三四在线| 伊人夜夜躁av伊人久久| 国产a级毛片一区| 欧美一区二区在线免费观看| 亚洲日本一区二区三区| 欧美午夜精品一区二区蜜桃| 26uuu亚洲综合色| 亚洲国产aⅴ天堂久久| 成人精品小蝌蚪| 精品国产一区二区三区久久影院| 亚洲综合免费观看高清完整版在线 | 国产盗摄一区二区| 欧美片网站yy| 亚洲男人的天堂在线aⅴ视频| 九九精品视频在线看| 欧美熟乱第一页| 国产精品国产精品国产专区不片| 麻豆视频一区二区| 欧美日本一道本| 亚洲理论在线观看| 成人精品鲁一区一区二区| 精品三级在线观看| 午夜精品成人在线视频| 日本道精品一区二区三区| 国产欧美精品一区二区三区四区| 久久精品国产一区二区三 | 日本不卡一区二区三区| 在线精品国精品国产尤物884a| 国产精品网站在线播放| 国产在线播放一区二区三区| 亚洲精品免费电影| av高清久久久| 国产精品美女视频| 丁香天五香天堂综合| 久久婷婷综合激情| 国产一区二区主播在线| 精品国产一区二区三区av性色| 免费观看在线色综合| 91精品福利在线一区二区三区| 亚洲成av人**亚洲成av**| 欧美在线一区二区| 亚洲在线视频一区| 欧美色综合网站| 亚洲3atv精品一区二区三区| 欧美调教femdomvk| 亚洲国产一区二区三区| 欧美日韩性生活| 爽爽淫人综合网网站| 91精品久久久久久蜜臀| 免费观看日韩电影| 日韩欧美在线影院| 捆绑调教一区二区三区| 日韩免费一区二区三区在线播放| 免费看精品久久片| 欧美白人最猛性xxxxx69交| 毛片基地黄久久久久久天堂| 日韩欧美成人午夜| 国产精品一区久久久久| 国产精品女主播在线观看| 91在线一区二区| 一区二区三区在线视频播放| 欧美三区免费完整视频在线观看| 一本到高清视频免费精品| 亚洲精品福利视频网站| 欧美日韩国产综合视频在线观看| 丝袜国产日韩另类美女| 欧美不卡在线视频| 国产精品一二三四五| 国产精品青草久久| 在线视频一区二区免费| 日精品一区二区| 日韩丝袜情趣美女图片| 国产又黄又大久久| 中文字幕制服丝袜一区二区三区| 在线免费观看成人短视频| 日韩国产欧美一区二区三区| 久久久久久久久一| 91老师片黄在线观看| 无吗不卡中文字幕| 久久久99免费| 在线视频你懂得一区| 欧美aaa在线| 日本一区二区在线不卡| 欧洲激情一区二区| 蜜桃视频第一区免费观看| 久久精品水蜜桃av综合天堂| 日本道精品一区二区三区| 美国十次了思思久久精品导航| 国产清纯白嫩初高生在线观看91| 日本韩国一区二区三区| 日本伊人精品一区二区三区观看方式 | 亚洲欧美激情小说另类| 9191国产精品| 成人h动漫精品| 丝袜美腿亚洲色图| 国产精品免费人成网站| 欧美一区二区三区视频在线观看| 91精品国产品国语在线不卡| 国产成人免费在线视频| 亚洲二区在线观看| 国产无人区一区二区三区| 欧美日韩第一区日日骚| 国产成人av资源| 奇米影视7777精品一区二区| ...xxx性欧美| 精品不卡在线视频| 欧美在线啊v一区| 国产成人在线看| 青椒成人免费视频| 亚洲另类一区二区| 日本一区免费视频| 日韩欧美国产午夜精品| 色婷婷av一区| 成人精品gif动图一区| 免费黄网站欧美| 亚洲国产日韩a在线播放性色| 中文字幕va一区二区三区| 欧美一区二区免费观在线| 色综合色狠狠综合色| 国产精品亚洲午夜一区二区三区 | 欧美一级国产精品| 91视频xxxx| 国产91精品欧美| 国内不卡的二区三区中文字幕| 亚洲电影一区二区| 亚洲蜜臀av乱码久久精品 | 色av综合在线| 国内精品免费**视频| 日韩va欧美va亚洲va久久| 亚洲理论在线观看| 国产精品久久久久9999吃药| 久久久久久一二三区| 日韩欧美国产电影| 91麻豆精品国产综合久久久久久| 91网站视频在线观看| 成人高清视频在线观看| 国产精品系列在线观看| 欧美日韩免费电影| 色综合天天性综合| www.日韩av| 成人黄色在线看| 成人性生交大合| 成人一级片在线观看| 国产盗摄一区二区| 国产激情视频一区二区三区欧美| 麻豆极品一区二区三区| 免费成人美女在线观看| 日韩av不卡一区二区| 午夜精品久久久久久久99樱桃| 亚洲午夜羞羞片| 亚洲一区二区三区激情| 亚洲综合激情小说| 亚洲成人午夜电影| 一区二区不卡在线播放 | 欧美日韩极品在线观看一区| 欧洲一区在线电影| 欧美亚洲国产一区二区三区| 91久久精品一区二区三区| 91精品福利视频| 欧美在线视频日韩| 欧美日韩一区三区四区| 欧美剧情片在线观看| 91麻豆精品久久久久蜜臀| 日韩一区二区精品葵司在线| 日韩欧美国产综合在线一区二区三区| 日韩午夜在线影院| 久久毛片高清国产| 中文幕一区二区三区久久蜜桃| 国产精品超碰97尤物18| 一区二区三区丝袜| 亚洲成av人在线观看| 日韩福利电影在线| 韩国精品主播一区二区在线观看| 国产成人午夜电影网| 色先锋资源久久综合| 欧美日韩成人在线一区| 精品免费一区二区三区|