亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 一個計算線性支持向量機的matlab源代碼
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Sun, 24 Oct 2004 01:42:17 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(48)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(25)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean ?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file ?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel ?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM ?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do ?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way ?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1] ?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it ?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems ?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC ?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do ?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do ?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do ?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s) ?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f423">There seems to be a zero division ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class ?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time ?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">Using python on MS windows, it fails to load the dll file.</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at {\tt http://www.csie.ntu.edu.tw/\verb"~"cjlin/libsvm}},
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Application."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Application."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean ?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function
sgn(w^Tx - rho).
nSV and nBSV are number of support vectors and bounded support
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
form of C-SVM where C is replaced by nu. nu simply shows the
corresponding parameter. More details are in
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
libsvm document</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f402"><b>Q: Can you explain more about the model file ?</b></a>
<br/>                                                                                

<p>
After the parameters, each line represents a support vector.
Support vectors are listed in the order of "labels" listed earlier.
(i.e., those from the first class in the "labels" list are
grouped first, and so on.) 
If k is the total number of classes,
in front of each support vector, there are
k-1 coefficients 
y*alpha where alpha are dual solution of the
following two class problems:
<br>
1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
<br>
and y=1 in first j-1 coefficients, y=-1 in the remaining
k-j coefficients.

For example, if there are 4 classes, the file looks like:

<pre>
+-+-+-+--------------------+
|1|1|1|                    |
|v|v|v|  SVs from class 1  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|2|                    |
|v|v|v|  SVs from class 2  |
|2|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 3  |
|3|3|4|                    |
+-+-+-+--------------------+
|1|2|3|                    |
|v|v|v|  SVs from class 4  |
|4|4|4|                    |
+-+-+-+--------------------+
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
<br/>                                                                                

<p>
We have float as the default as you can store more numbers
in the cache. 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩黄色一区二区| 久久亚洲一级片| 亚洲精品精品亚洲| 一本色道久久综合亚洲aⅴ蜜桃| 国产精品看片你懂得| 成人不卡免费av| 亚洲特黄一级片| 欧美日韩一级二级| 久久国产精品99久久久久久老狼| 久久久久久久综合色一本| 国产iv一区二区三区| 亚洲综合精品久久| 日韩欧美二区三区| 成人午夜免费av| 亚洲高清免费视频| 久久女同精品一区二区| 91网站最新地址| 奇米精品一区二区三区在线观看一| 久久久噜噜噜久久人人看| 91麻豆成人久久精品二区三区| 日韩av午夜在线观看| 亚洲国产精品精华液ab| 日本道免费精品一区二区三区| 日本麻豆一区二区三区视频| 日本不卡免费在线视频| 久久精品网站免费观看| 日本韩国欧美三级| 捆绑调教一区二区三区| 亚洲欧美日韩一区二区| 精品国产伦理网| 欧美性大战久久久| 国产乱码精品一区二区三区av| 一区二区三区在线免费播放 | 国产精品不卡一区二区三区| 欧美在线免费播放| 韩国一区二区在线观看| 亚洲在线中文字幕| 国产精品你懂的在线| 日韩欧美高清在线| 精品视频色一区| 91影视在线播放| 国产精品一品二品| 热久久一区二区| 亚洲一区二区成人在线观看| 久久久噜噜噜久久人人看 | 一本久道久久综合中文字幕| 免费观看一级特黄欧美大片| 亚洲码国产岛国毛片在线| 精品国产一区a| 制服丝袜亚洲网站| 在线观看av一区| 91丨porny丨国产入口| 国产成人午夜精品影院观看视频| 日本欧美一区二区三区乱码 | 性久久久久久久久| 中文字幕在线免费不卡| 久久精品欧美一区二区三区麻豆| 欧美一卡二卡三卡| 欧美日韩国产电影| 欧美视频在线一区二区三区| 一本色道**综合亚洲精品蜜桃冫| 成人午夜激情视频| 国产美女精品人人做人人爽 | 亚洲国产精品人人做人人爽| 亚洲免费观看高清在线观看| 国产精品欧美一区喷水| 国产色综合久久| 日韩精品一区第一页| 亚洲成人tv网| 亚洲第一福利一区| 亚洲一区二区美女| 午夜天堂影视香蕉久久| 亚洲成av人片在线| 亚洲欧美日韩综合aⅴ视频| 26uuu欧美日本| 精品亚洲成av人在线观看| 日韩国产欧美在线播放| 日韩主播视频在线| 日韩精品电影在线| 日本人妖一区二区| 国产一区日韩二区欧美三区| 加勒比av一区二区| 国产剧情一区在线| 国产激情视频一区二区三区欧美| 国产剧情一区二区| 国产成人综合在线观看| 懂色av一区二区夜夜嗨| 大桥未久av一区二区三区中文| 成人小视频在线| 不卡区在线中文字幕| 欧美网站一区二区| 91麻豆精品国产91久久久 | 91香蕉视频污| 欧美在线啊v一区| 91精品国产麻豆| 久久奇米777| 久久99在线观看| 国产原创一区二区| 91免费精品国自产拍在线不卡| 色av一区二区| 日韩一级黄色片| 国产人成亚洲第一网站在线播放| 亚洲日穴在线视频| 午夜精品在线看| 国产美女娇喘av呻吟久久| 色综合久久久久综合体| 欧美一卡2卡3卡4卡| 中国色在线观看另类| 亚洲已满18点击进入久久| 麻豆91在线看| 成人av动漫在线| 在线观看日韩高清av| 日韩手机在线导航| 中文字幕一区av| 老司机精品视频导航| 91网页版在线| 678五月天丁香亚洲综合网| 日本一区二区电影| 亚洲18色成人| heyzo一本久久综合| 91麻豆精品国产自产在线| 国产精品久久久久久亚洲毛片| 日韩高清在线不卡| 成人免费黄色大片| 洋洋成人永久网站入口| 九九久久精品视频| 91国模大尺度私拍在线视频| 欧美tickling网站挠脚心| 一区二区三区在线观看动漫| 国产一区二区三区四| 91高清视频在线| 欧美韩国日本不卡| 美国一区二区三区在线播放| 日本电影欧美片| 国产欧美一区二区精品性色| 日韩激情一区二区| 97精品电影院| 国产午夜一区二区三区| 天天综合天天综合色| 色婷婷精品大在线视频| 国产午夜精品福利| 麻豆91免费观看| 欧美一区二区视频网站| 午夜久久久久久| 色噜噜狠狠色综合欧洲selulu| 国产日韩精品一区二区浪潮av| 久久精品国产精品亚洲综合| 91国内精品野花午夜精品| 亚洲欧洲在线观看av| 国产成人亚洲综合a∨婷婷图片| 欧美成人一区二区三区在线观看 | 91精品福利在线一区二区三区| 国产精品一线二线三线| 日韩一区二区中文字幕| 日韩电影在线一区| 欧美日韩国产综合一区二区 | 欧美日韩激情一区二区| 亚洲精品大片www| 97se亚洲国产综合自在线不卡| 国产日本亚洲高清| 国产高清视频一区| 久久久亚洲精品一区二区三区| 国产在线视频一区二区三区| 日韩一区二区高清| 久热成人在线视频| 日韩免费观看高清完整版| 奇米色一区二区三区四区| 欧美一级二级在线观看| 青青青伊人色综合久久| 日韩精品一区二区三区swag | 国产精品嫩草99a| 国产69精品久久久久毛片| 久久精品一二三| 成人免费视频caoporn| 1区2区3区国产精品| 9i看片成人免费高清| 一个色在线综合| 欧美精品在线一区二区三区| 青娱乐精品在线视频| 亚洲不卡一区二区三区| 欧美蜜桃一区二区三区| 久久精品国产在热久久| 中文字幕免费一区| 91老司机福利 在线| 香蕉成人伊视频在线观看| 日韩欧美一级在线播放| 国产精品小仙女| 亚洲免费色视频| 88在线观看91蜜桃国自产| 久久草av在线| 国产精品久久久久久久久果冻传媒| 色狠狠一区二区| 毛片av一区二区三区| 中文字幕乱码久久午夜不卡| 色婷婷综合久久| 日本美女一区二区三区视频| 欧美国产精品专区| 色婷婷精品久久二区二区蜜臀av| 奇米在线7777在线精品 | 亚洲蜜臀av乱码久久精品|