?? exhsrch.m
字號:
function [input_index, elapsed_time] = ...
exhsrch(in_n, trn_data, chk_data, input_name, mf_n, epoch_n)
%EXHSRCH Exhaustive search for input selection in ANFIS modeling
% EXHSRCH performs an exhaustive search on selecting 1 to 4 inputs
% from a set of input candidates for ANFIS modeling.
% EXHSRCH will launches C(M, N) ANFIS modeling processes if we want
% to select N inputs from M candidates. Therefore it might takes a
% long time if M is moderately large and N is about the half of M.
%
% Usage:
% [INPUT_INDEX, ELAPSED_TIME] = ...
% EXHSRCH(IN_N, TRN_DATA, CHK_DATA, INPUT_NAME, MF_N, EPOCH_N)
%
% INPUT_INDEX: index of the inputs selected by EXHSRCH
% ELAPSED_TIME: elapsed time in input selection
% IN_N: number of inputs to be selected from the input candidates
% (This is restricted to be from 1 to 4.)
% TRN_DATA: original training data
% CHK_DATA: original checking data
% INPUT_NAME: input name for all input candidates
% (Optional, default to 'in1', 'in2', 'in3', etc.)
% MF_N: no. of membership function for each input
% (Optional, default to 2.)
% EPOCH_N: no. of training epochs for ANFIS
% (Optional, default to 1.)
%
% Type EXHSRCH for a self demo on selecting inputs for automobile
% MPG (miles per gallon) prediction.
%
% See also SEQSRCH.
% Copyright 1994-2002 The MathWorks, Inc.
% $Revision: 1.9 $
% Roger Jang, August 1997
if nargin < 6, epoch_n = 1; end
if nargin < 5, mf_n = 2; end
if nargin == 3,
input_name = 'in1';
for i = 2:size(trn_data,2)-1,
input_name = str2mat(input_name, ['in', num2str(i)]);
end
end
if nargin < 3 & nargin ~= 0,
error('Need at least three input arguments.');
end
if nargin == 0, % Self demo (and test too)
% Dryer data
drydata;
trn_data_n = 300;
trn_data = data(1:trn_data_n, :);
chk_data = data(trn_data_n+1:size(data,1), :);
[input_index, elapsed_time] = exhsrch(2,trn_data,chk_data,input_name);
fprintf('\nIndices of selected inputs:\n');
disp(input_index);
fprintf('Elapsed time in input selection: %.3f\n', elapsed_time);
return;
load bjdata.dat
output = bjdata(:, 1);
input = bjdata(:, 2:11);
data = [input output];
input_name = str2mat('y(k)', 'y(k-1)', 'y(k-2)', 'y(k-3)', ...
'u(k)', 'u(k-1)', 'u(k-2)', 'u(k-3)', 'u(k-4)', 'u(k-5)');
trn_data = data( 1:145, :);
chk_data = data(146:290, :);
exhsrch(1, trn_data, chk_data, input_name, 3);
exhsrch(2, trn_data, chk_data, input_name, 3);
return;
[data, input_name] = loadgas;
trn_data = data(1:2:size(data, 1), :);
chk_data = data(2:2:size(data, 1), :);
exhsrch(1, trn_data, chk_data, input_name);
exhsrch(2, trn_data, chk_data, input_name);
exhsrch(3, trn_data, chk_data, input_name);
exhsrch(4, trn_data, chk_data, input_name);
return;
end
if in_n < 1 | in_n > 4,
error([mfilename, ...
' only selects 1 to 4 input variables from all input candidates.']);
end
all_in_n = size(trn_data, 2)-1;
t0 = clock;
% ======= Training options
mf_type = 'gbellmf';
ss = 0.1;
ss_dec_rate = 0.5;
ss_inc_rate = 1.5;
anfis_n = prod(1:all_in_n)/(prod(1:in_n)*prod(1:(all_in_n-in_n)));
index = zeros(anfis_n, in_n);
trn_error = zeros(anfis_n, 1);
chk_error = zeros(anfis_n, 1);
if in_n == 1,
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with %d inputs selected from %d candidates...\n\n',...
anfis_n, in_n, all_in_n);
model = 1;
for i=1:all_in_n,
in = deblank(input_name(i, :));
index(model, :) = [i];
this_trn_data = trn_data(:, [i all_in_n+1]);
this_chk_data = chk_data(:, [i all_in_n+1]);
in_fismat = genfis1(this_trn_data, mf_n, mf_type);
[trn_out_fismat t_err step_size chk_out_fismat c_err] = ...
anfis(this_trn_data, in_fismat, ...
[epoch_n nan ss ss_dec_rate ss_inc_rate], ...
[0 0 0 0], this_chk_data, 1);
trn_error(model) = min(t_err);
chk_error(model) = min(c_err);
fprintf('ANFIS model %d: %s', model, in);
fprintf(' --> trn=%.4f,', trn_error(model));
fprintf(' chk=%.4f', chk_error(model));
fprintf('\n');
model = model+1;
end
elseif in_n == 2,
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with %d inputs selected from %d candidates...\n\n',...
anfis_n, in_n, all_in_n);
model = 1;
for i=1:all_in_n,
for j=i+1:all_in_n,
in1 = deblank(input_name(i, :));
in2 = deblank(input_name(j, :));
index(model, :) = [i j];
this_trn_data = trn_data(:, [i j all_in_n+1]);
this_chk_data = chk_data(:, [i j all_in_n+1]);
in_fismat = genfis1(this_trn_data, mf_n, mf_type);
[trn_out_fismat t_err step_size chk_out_fismat c_err] = ...
anfis(this_trn_data, in_fismat, ...
[epoch_n nan ss ss_dec_rate ss_inc_rate], ...
[0 0 0 0], this_chk_data, 1);
trn_error(model) = min(t_err);
chk_error(model) = min(c_err);
fprintf('ANFIS model %d: %s %s', model, in1, in2);
fprintf(' --> trn=%.4f,', trn_error(model));
fprintf(' chk=%.4f', chk_error(model));
fprintf('\n');
model = model+1;
end
end
elseif in_n == 3,
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with %d inputs selected from %d candidates...\n\n',...
anfis_n, in_n, all_in_n);
model = 1;
for i=1:all_in_n,
for j=i+1:all_in_n,
for k=j+1:all_in_n,
in1 = deblank(input_name(i, :));
in2 = deblank(input_name(j, :));
in3 = deblank(input_name(k, :));
index(model, :) = [i j k];
this_trn_data = trn_data(:, [i j k all_in_n+1]);
this_chk_data = chk_data(:, [i j k all_in_n+1]);
in_fismat = genfis1(this_trn_data, mf_n, mf_type);
[trn_out_fismat t_err step_size chk_out_fismat c_err] = ...
anfis(this_trn_data, in_fismat, ...
[epoch_n nan ss ss_dec_rate ss_inc_rate], ...
[0 0 0 0], this_chk_data, 1);
trn_error(model) = min(t_err);
chk_error(model) = min(c_err);
fprintf('ANFIS model %d: %s %s %s', model, in1, in2, in3);
fprintf(' --> trn=%.4f,', trn_error(model));
fprintf(' chk=%.4f', chk_error(model));
fprintf('\n');
model = model+1;
end
end
end
elseif in_n == 4,
% ====== Train ANFIS with different input variables
fprintf('\nTrain %d ANFIS models, each with %d inputs selected from %d candidates...\n\n',...
anfis_n, in_n, all_in_n);
model = 1;
for i=1:all_in_n,
for j=i+1:all_in_n,
for k=j+1:all_in_n,
for l=k+1:all_in_n,
in1 = deblank(input_name(i, :));
in2 = deblank(input_name(j, :));
in3 = deblank(input_name(k, :));
in4 = deblank(input_name(l, :));
index(model, :) = [i j k l];
this_trn_data = trn_data(:, [i j k l all_in_n+1]);
this_chk_data = chk_data(:, [i j k l all_in_n+1]);
in_fismat = genfis1(this_trn_data, mf_n, mf_type);
[trn_out_fismat t_err step_size chk_out_fismat c_err] = ...
anfis(this_trn_data, in_fismat, ...
[epoch_n nan ss ss_dec_rate ss_inc_rate], ...
[0 0 0 0], this_chk_data, 1);
fprintf('ANFIS model %d: %s %s %s %s', model, in1, in2, in3, in4);
fprintf(' --> trn=%.4f,', trn_error(model));
fprintf(' chk=%.4f', chk_error(model));
fprintf('\n');
trn_error(model) = min(t_err);
chk_error(model) = min(c_err);
model = model+1;
end
end
end
end
end
% ====== Generate input_index
[a b] = min(trn_error);
input_index = index(b,:);
elapsed_time = etime(clock, t0);
% ====== The following is for plotting
% ====== Reordering according to training error
[a b] = sort(trn_error);
%b = flipud(b); % List according to decreasing trn error
trn_error = trn_error(b);
chk_error = chk_error(b);
index = index(b, :);
% ====== Display training and checking errors
figTitle = ['ANFIS Input Selection: Select ', num2str(in_n), ...
' inputs from ', num2str(all_in_n), ' candidates'];
figH = findobj(0, 'name', figTitle);
if isempty(figH),
figH = figure(...
'Name', figTitle, ...
'NumberTitle', 'off');
else
set(0, 'currentfig', figH);
end
x = (1:anfis_n)';
subplot(211);
plot(x, trn_error, '-', x, chk_error, '-', ...
x, trn_error, 'o', x, chk_error, '*');
tmp = x(:, ones(1, 3))';
X = tmp(:);
tmp = [zeros(anfis_n, 1) max(trn_error, chk_error) nan*ones(anfis_n, 1)]';
Y = tmp(:);
hold on; plot(X, Y, 'g'); hold off;
axis([1 anfis_n -inf inf]);
set(gca, 'xticklabel', []);
% ====== Add text of input variables
if in_n == 1,
for k = 1:anfis_n,
text(x(k), -0.3, deblank(input_name(index(k,1), :)));
end
elseif in_n == 2,
for k = 1:anfis_n,
text(x(k), -0.3, ...
[deblank(input_name(index(k,1), :)) ' ' ...
deblank(input_name(index(k,2), :))]);
end
elseif in_n == 3,
for k = 1:anfis_n,
text(x(k), -0.3, ...
[deblank(input_name(index(k,1), :)) ' ' ...
deblank(input_name(index(k,2), :)) ' ' ...
deblank(input_name(index(k,3), :))]);
end
elseif in_n == 4,
for k = 1:anfis_n,
text(x(k), -0.3, ...
[deblank(input_name(index(k,1), :)) ' ' ...
deblank(input_name(index(k,2), :)) ' ' ...
deblank(input_name(index(k,3), :)) ' ' ...
deblank(input_name(index(k,4), :))]);
end
end
h = findobj(gcf, 'type', 'text');
set(h, 'rot', 90, 'fontsize', 10, 'hori', 'right');
drawnow
title('Training (Circles) and Checking (Asterisks) Errors');
ylabel('RMS Errors');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -