亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fcmdemo_codepad.html

?? 模糊控制工具箱,很好用的,有相應的說明文件,希望對大家有用!
?? HTML
字號:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>Fuzzy C-means Clustering</title>      <meta name="generator" content="MATLAB 7.1">      <meta name="date" content="2005-06-15">      <meta name="m-file" content="fcmdemo_codepad">      <link rel="stylesheet" type="text/css" href="../../../matlab/demos/private/style.css">   </head>   <body>      <div class="header">         <div class="right"><a href="matlab:fcmdemo">Run in the Command Window</a></div>      </div>      <div class="content">         <h1>Fuzzy C-means Clustering</h1>         <introduction>            <p>This demo illustrates performing fuzzy c-means clustering on 2-dimensional data.</p>         </introduction>         <h2>Contents</h2>         <div>            <ul>               <li><a href="#2">What is Fuzzy c-means clustering?</a></li>               <li><a href="#3">What does this demo illustrate?</a></li>            </ul>         </div>         <p>Clustering of numerical data forms the basis of many classification and system modeling algorithms. The purpose of clustering            is to identify natural groupings of data from a large data set to produce a concise representation of a system's behavior.         </p>         <h2>What is Fuzzy c-means clustering?<a name="2"></a></h2>         <p>Fuzzy c-means (<tt>fcm</tt>) is a data clustering technique in which a dataset is grouped into n clusters with every datapoint in the dataset belonging            to every cluster to a certain degree. For example, a certain datapoint that lies close to the center of a cluster will have            a high degree of belonging or membership to that cluster and another datapoint that lies far away from the center of a cluster            will have a low degree of belonging or membership to that cluster.         </p>         <p>The Fuzzy Logic Toolbox command line function, <tt>fcm</tt>, starts with an initial guess for the cluster centers, which are intended to mark the mean location of each cluster. The            initial guess for these cluster centers is most likely incorrect. Next, <tt>fcm</tt> assigns every data point a membership grade for each cluster. By iteratively updating the cluster centers and the membership            grades for each data point, <tt>fcm</tt> iteratively  moves the cluster centers to the right location within a data set. This  iteration is based on minimizing an            objective function that represents  the distance from any given data point to a cluster center weighted by  that data point's            membership grade.         </p>         <h2>What does this demo illustrate?<a name="3"></a></h2>         <p>This demo displays a GUI window and lets you try out various parameter settings for the fuzzy c-means algorithm and observe            the clustering for 2-D data. You can choose a sample data set and an arbitrary number of clusters from the drop down menus            on the right, and then click "Start" to start the fuzzy clustering process.         </p><pre class="codeinput">fcmdemo;</pre><img vspace="5" hspace="5" src="fcmdemo_codepad_01.png"> <p><tt>fcm</tt> is a command line function whose output is a list of n cluster centers and n membership grades for each data point. You can            use the information returned by fcm to build a fuzzy inference system by creating membership functions to represent the fuzzy            qualities of each cluster.         </p>         <p>Here is the underlying code that performs the clustering.</p><pre class="codeinput">data = load (<span class="string">'fcmdemodata.dat'</span>); <span class="comment">% load some sample data</span>n_clusters = 3;[center,U,obj_fcn] = fcm(data, n_clusters);</pre><pre class="codeoutput">Iteration count = 1, obj. fcn = 17.900154Iteration count = 2, obj. fcn = 13.891466Iteration count = 3, obj. fcn = 13.211500Iteration count = 4, obj. fcn = 11.377226Iteration count = 5, obj. fcn = 10.164428Iteration count = 6, obj. fcn = 10.004708Iteration count = 7, obj. fcn = 9.841849Iteration count = 8, obj. fcn = 8.566988Iteration count = 9, obj. fcn = 5.683575Iteration count = 10, obj. fcn = 5.025842Iteration count = 11, obj. fcn = 5.002571Iteration count = 12, obj. fcn = 5.001923Iteration count = 13, obj. fcn = 5.001901Iteration count = 14, obj. fcn = 5.001900</pre><p><tt>n_clusters</tt> refers to the number of clusters set by the user in the GUI and <tt>data</tt> refers to the dataset currently being visualized in the GUI. The function FCM performs the fuzzy c-means clustering on the            data and in this case separates it into 3 clusters.         </p>         <p>You can also tune the 3 optional parameters for the FCM algorithm (exponent, maximum number of iterations and minimum amount            of improvement) from the demo GUI and observe how the clustering process is consequently altered.         </p>         <p>Once the clustering is done, you can select one of the clusters by clicking on it, and view the membership function surface            by clicking the "Plot MF" button. To get a better viewing angle, click and drag inside the figure to rotate the MF surface.         </p>         <p class="footer">Copyright 2005 The MathWorks, Inc.<br>            Published with MATLAB&reg; 7.1<br></p>      </div>      <!--##### SOURCE BEGIN #####%% Fuzzy C-means Clustering% This demo illustrates performing fuzzy c-means clustering on% 2-dimensional data.%% Copyright 2005 The MathWorks, Inc.%%% Clustering of numerical data forms the basis of many classification and% system modeling algorithms. The purpose of clustering is to identify % natural groupings of data from a large data set to produce a concise % representation of a system's behavior. %%% What is Fuzzy c-means clustering? %% Fuzzy c-means (|fcm|) is a data clustering technique in which a dataset is% grouped into n clusters with every datapoint in the dataset belonging to% every cluster to a certain degree. For example, a certain datapoint that% lies close to the center of a cluster will have a high degree of% belonging or membership to that cluster and another datapoint that lies% far away from the center of a cluster will have a low degree of belonging% or membership to that cluster.%% The Fuzzy Logic Toolbox command line function, |fcm|, starts with an initial % guess for the cluster centers, which are intended to mark the mean % location of each cluster. The initial guess for these cluster centers is % most likely incorrect. Next, |fcm| assigns every data point a membership% grade for each cluster. By iteratively updating the cluster centers and% the membership grades for each data point, |fcm| iteratively  moves the% cluster centers to the right location within a data set. This  iteration% is based on minimizing an objective function that represents  the% distance from any given data point to a cluster center weighted by  that% data point's membership grade. %%% What does this demo illustrate?% This demo displays a GUI window and lets you try out various parameter% settings for the fuzzy c-means algorithm and observe the clustering for % 2-D data. You can choose a sample data set and an arbitrary number of % clusters from the drop down menus on the right, and then click "Start" to % start the fuzzy clustering process.%fcmdemo;%% % |fcm| is a command line function whose output is a list of n cluster centers% and n membership grades for each data point. You can use the % information returned by fcm to build a fuzzy inference system by creating % membership functions to represent the fuzzy qualities of each cluster.%% Here is the underlying code that performs the clustering. data = load ('fcmdemodata.dat'); % load some sample datan_clusters = 3; [center,U,obj_fcn] = fcm(data, n_clusters);%%% |n_clusters| refers to the number of clusters set by the user in the GUI% and |data| refers to the dataset currently being visualized in the GUI.% The function FCM performs the fuzzy c-means clustering on the data and in% this case separates it into 3 clusters.%% You can also tune the 3 optional parameters for the FCM algorithm % (exponent, maximum number of iterations and minimum amount of % improvement) from the demo GUI and observe how the clustering process is % consequently altered.%%%% Once the clustering is done, you can select one of the clusters by % clicking on it, and view the membership function surface by clicking the % "Plot MF" button. To get a better viewing angle, click and drag inside% the figure to rotate the MF surface.%displayEndOfDemoMessage(mfilename)##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久综合狠狠综合久久激情| 毛片不卡一区二区| 久久精品国产久精国产爱| a亚洲天堂av| 欧美变态凌虐bdsm| 亚洲h动漫在线| 亚洲精品在线一区二区| 尤物视频一区二区| 99天天综合性| 国产女同互慰高潮91漫画| 日韩精品欧美成人高清一区二区| 99久久久国产精品| 国产欧美一区二区三区在线老狼| 久久av中文字幕片| 日韩三级中文字幕| 天堂av在线一区| 欧美色图第一页| 中文字幕中文字幕在线一区| 国产精品影视在线| 久久久一区二区| 激情五月激情综合网| 精品免费国产一区二区三区四区| 日本不卡高清视频| 欧美一区二区三区影视| 奇米精品一区二区三区在线观看| 欧美日韩夫妻久久| 日韩中文字幕亚洲一区二区va在线| 色诱亚洲精品久久久久久| 中文字幕一区二区不卡| 成人国产精品免费观看| 国产精品高清亚洲| 99精品国产热久久91蜜凸| 最新国产の精品合集bt伙计| 欧美精品一区二区三区很污很色的 | 99精品欧美一区二区蜜桃免费 | 亚洲国产成人私人影院tom| 无码av免费一区二区三区试看| 欧美午夜片在线观看| 亚洲一区二区不卡免费| 欧美三级乱人伦电影| 亚洲国产成人av好男人在线观看| 欧美色图片你懂的| 久久精品二区亚洲w码| 久久久久久9999| 成人av小说网| 一区二区三区四区国产精品| 欧美视频一区在线| 另类小说欧美激情| 中文久久乱码一区二区| 在线看国产一区| 日韩国产欧美在线观看| 精品国产乱码久久久久久老虎| 国产乱码精品一品二品| 成人免费一区二区三区视频 | 日韩美女在线视频 | 日本欧美在线看| 精品国产免费一区二区三区四区| 国产91精品一区二区| 一区二区三区精品在线| 日韩手机在线导航| av动漫一区二区| 三级影片在线观看欧美日韩一区二区| 精品久久久久久久人人人人传媒 | 久久久久国产一区二区三区四区| av网站一区二区三区| 天天做天天摸天天爽国产一区| 久久久美女毛片| 在线视频综合导航| 国产盗摄精品一区二区三区在线| 一区二区欧美视频| 久久久精品国产免大香伊| 色一区在线观看| 国产在线视频精品一区| 一区二区三区在线观看国产| 欧美精品一区二区三区在线| 久久网站最新地址| 91国内精品野花午夜精品| 狠狠久久亚洲欧美| 夜夜嗨av一区二区三区| 国产亚洲精品福利| 欧美久久久久久蜜桃| 成人av在线播放网址| 免费精品视频最新在线| 一区二区三区资源| 日本一区二区免费在线观看视频 | 国产日韩综合av| 91麻豆精品国产91久久久久| 91在线码无精品| 高潮精品一区videoshd| 老司机精品视频导航| 亚洲午夜久久久久久久久电影院| 中文字幕av资源一区| 日韩免费看的电影| 欧美一区二区三区四区五区| 一本久久a久久免费精品不卡| 国产精品白丝av| 麻豆精品视频在线观看视频| 亚洲第一激情av| 亚洲影院理伦片| 亚洲免费三区一区二区| 国产精品每日更新| 国产精品五月天| 国产视频一区在线播放| 欧美精品一区二区三区久久久 | 在线免费观看成人短视频| 不卡av在线免费观看| 国产乱色国产精品免费视频| 经典三级一区二区| 久久se精品一区二区| 肉色丝袜一区二区| 香蕉影视欧美成人| 亚洲亚洲人成综合网络| 亚洲午夜在线视频| 视频一区视频二区中文| 日韩国产精品91| 久久99久久久久久久久久久| 欧美日韩中文一区| 欧美绝品在线观看成人午夜影视| 欧美日韩在线播| 这里只有精品电影| 欧美一区二区视频在线观看 | 一区二区三区 在线观看视频| 亚洲色图在线看| 一级做a爱片久久| 亚洲va天堂va国产va久| 日本色综合中文字幕| 久久成人18免费观看| 国产成人亚洲综合a∨婷婷 | 国产精品国模大尺度视频| 国产精品二区一区二区aⅴ污介绍| 一区精品在线播放| 一区二区三国产精华液| 午夜精品久久久久久久久久| 久久精品久久99精品久久| 国产精品资源在线观看| 99久久国产综合精品麻豆| 欧美在线色视频| 欧美tk丨vk视频| 中文字幕不卡在线播放| 亚洲一级二级在线| 久久激情五月激情| 波多野结衣中文字幕一区二区三区| 91热门视频在线观看| 在线成人高清不卡| 久久久精品欧美丰满| 一区二区三区日韩欧美精品| 日本在线观看不卡视频| 国产宾馆实践打屁股91| 精品视频在线看| 久久久综合视频| 亚洲国产美女搞黄色| 国产一区二区免费视频| 欧美综合久久久| 久久先锋影音av鲁色资源| 一区二区三区国产精品| 韩日欧美一区二区三区| 色屁屁一区二区| 久久综合网色—综合色88| 1区2区3区国产精品| 蜜臀va亚洲va欧美va天堂| 成人av网站免费观看| 欧美一区二区三区视频免费播放| 国产精品亲子伦对白| 毛片av中文字幕一区二区| 色综合天天综合给合国产| 精品国产乱码久久久久久免费| 国产成人高清在线| 国产高清精品在线| 日产精品久久久久久久性色 | 国产午夜精品在线观看| 国产精品久久毛片av大全日韩| 亚洲人成电影网站色mp4| 亚洲精品乱码久久久久久| 欧美妇女性影城| 国产精品女人毛片| 国产精品123| 日韩欧美综合一区| 亚洲va天堂va国产va久| 日本韩国精品在线| 亚洲色欲色欲www| 成人中文字幕在线| 国产午夜久久久久| 色婷婷精品大在线视频| 欧美大度的电影原声| 亚洲色图另类专区| 日韩av不卡在线观看| 成人av免费网站| 欧美精品粉嫩高潮一区二区| 久久久99精品久久| 日韩中文字幕亚洲一区二区va在线 | 精品99久久久久久| 亚洲精品视频在线| 国产伦精品一区二区三区视频青涩 | 经典三级在线一区| 亚洲成年人影院| 欧美丝袜丝交足nylons| 亚洲国产精品嫩草影院| 欧美日韩www| 日精品一区二区| 日韩免费一区二区三区在线播放|