亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? invkine_codepad.html

?? 模糊控制工具箱,很好用的,有相應(yīng)的說明文件,希望對(duì)大家有用!
?? HTML
?? 第 1 頁 / 共 3 頁
字號(hào):
% as the dataset to train the first ANFIS network. %% Similarly, the second ANFIS network will be trained with X and Y% coordinates as input and corresponding |theta2| values as output. The% matrix |data2| contains the |x-y-theta2| dataset required to train the% second ANFIS network. Therefore |data1| will be used as the dataset to% train the second ANFIS network. %% |anfis| is the function that is used to train an ANFIS network. There are% several syntaxes to the function. If called with the following syntax,% |anfis| automatically creates a Sugeno-type FIS and trains it using the% training data passed to the function.anfis1 = anfis(data1, 7, 150, [0,0,0,0]); % train first ANFIS networkanfis2 = anfis(data2, 6, 150, [0,0,0,0]); % train second ANFIS network%%% The first parameter to |anfis| is the training data, the second parameter% is the number of membership functions used to characterize each input and% output, the third parameter is the number of training <#23 epochs> and% the last parameter is the options to display progress during training.% The values for number of epochs and the number of membership functions% have been arrived at after a fair amount of experimentation with% different values.%% The toolbox comes with GUI's that helps build and experiment with ANFIS% networks.%% |anfis1| and |anfis2| represent the two trained ANFIS networks that% will be deployed in the larger control system.%% Once the training is complete, the two ANFIS networks would have learned% to approximate the angles (|theta1, theta2|) as a function of the% coordinates (|x, y|). One advantage of using the fuzzy approach is that% the ANFIS network would now approximate the angles for coordinates that% are similar but not exactly the same as it was trained with. For example,% the trained ANFIS networks are now capable of approximating the angles% for coordinates that lie between two points that were included in the% training dataset. This will allow the final controller to move the arm% smoothly in the input space. % % We now have two trained ANFIS networks which are ready to be deployed% into the larger system that will utilize these networks to control the% robotic arms.% %% Validating the ANFIS networks% % Having trained the networks, an important follow up step is to validate the% networks to determine how well the ANFIS networks would perform inside% the larger control system.%% Since this demo problem deals with a two-joint robotic arm whose inverse% kinematics formulae can be derived, it is possible to test the answers% that the ANFIS networks produce with the answers from the derived% formulae.%% Let's assume that it is important for the ANFIS networks to have low% errors within the operating range |0<x<2| and |8<y<10|.%x = 0:0.1:2; % x coordinates for validationy = 8:0.1:10; % y coordinates for validation%%% The |theta1| and |theta2| values are deduced mathematically from the x% and y coordinates using inverse kinematics formulae.[X, Y] = meshgrid(x,y);c2 = (X.^2 + Y.^2 - l1^2 - l2^2)/(2*l1*l2);s2 = sqrt(1 - c2.^2);THETA2D = atan2(s2, c2); % theta2 is deducedk1 = l1 + l2.*c2;k2 = l2*s2;THETA1D = atan2(Y, X) - atan2(k2, k1); % theta1 is deduced%%% <matlab:edit('traininv') Click here for unvectorized code>%%% |THETA1D| and |THETA2D| are the variables that hold the values of% |theta1| and |theta2| deduced using the inverse kinematics formulae.%% |theta1| and |theta2| values predicted by the trained anfis networks% are obtained by using the command |evalfis| which evaluates a FIS for the% given inputs.%% Here, |evalfis| is used to find out the FIS outputs for the same x-y% values used earlier in the inverse kinematics formulae.XY = [X(:) Y(:)];THETA1P = evalfis(XY, anfis1); % theta1 predicted by anfis1THETA2P = evalfis(XY, anfis2); % theta2 predicted by anfis2%%% Now, we can see how close the FIS outputs are with respect to the% deduced values.theta1diff = THETA1D(:) - THETA1P;theta2diff = THETA2D(:) - THETA2P;subplot(2,1,1);plot(theta1diff);ylabel('THETA1D - THETA1P')title('Deduced theta1 - Predicted theta1')subplot(2,1,2);plot(theta2diff);ylabel('THETA2D - THETA2P')title('Deduced theta2 - Predicted theta2')%%% The errors are in the |1e-3| range which is a fairly good number for the% application it is being used in. However this may not be acceptable for% another application, in which case the parameters to the |anfis| function% may be tweaked until an acceptable solution is arrived at. Also, other% techniques like input selection and alternate ways to model the problem% may be explored.%% Building a solution around the trained ANFIS networks%% Now given a specific task, such as robots picking up an object in an% assembly line, the larger control system will use the trained ANFIS% networks as a reference, much like a lookup table, to determine what the% angles of the arms must be, given a desired location for the tip of the% arm. Knowing the desired angles and the current angles of the joints, % the system will apply force appropriately on the joints of the arms to% move them towards the desired location.%% The GUI demo |invkine| demonstrates how the two trained ANFIS networks% have been used to trace an ellipse in the input space. invkine%%% The two ANFIS networks used in the demo have been pre-trained and are% deployed into a larger system that controls the tip of the two-joint% robot arm to trace an ellipse in the input space.%% The ellipse to be traced can be moved around. Move the ellipse to a% slightly different location and observe how the system responds by moving% the tip of the robotic arm from its current location to the closest% point on the new location of the ellipse. Also observe that the system% responds smoothly as long as the ellipse to be traced lies within the 'x'% marked spots which represent the data grid that was used to train the% networks. Once the ellipse is moved outside the range of data it was% trained with, the ANFIS networks respond unpredictably. This emphasizes% the importance of having relevant and representative data for training.% Data must be generated based on the expected range of operation to avoid% such unpredictability and instability issues.%%%% Conclusion% This demo illustrated using ANFIS to solve an inverse kinematics problem.% Fuzzy logic has also found numerous other applications in other areas of% technology like non-linear control, automatic control, signal processing,% system identification, pattern recognition, time series prediction, data% mining, financial applications etc.,%% Explore other demos and the documentation for more insight into fuzzy% logic and its applications.%%% Glossary% *ANFIS* - Adaptive Neuro-Fuzzy Inference System. a technique for% automatically tuning Sugeno-type inference systems based on training data.%% *membership functions* - a function that specifies the degree to which a% given input belongs to a set or is related to a concept.%% *input space* - it is a term used to define the range of all possible% values%% *FIS* - Fuzzy Inference System. The overall name for a system that uses% fuzzy reasoning to map an input space to an output space.%% *epochs* - 1 epoch of training represents one complete presentation of% all the samples/datapoints/rows of the training dataset to the FIS. The% inputs of each sample are presented and the FIS outputs are computed% which are compared with the desired outputs to compute the error between% the two. The parameters of the membership functions are then tuned to% reduce the error between the desired output and the actual FIS output.%displayEndOfDemoMessage(mfilename)##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产一区二区主播在线| 男人操女人的视频在线观看欧美| 日韩国产欧美在线播放| 99re这里只有精品6| 精品国产不卡一区二区三区| 亚洲最大色网站| 粉嫩aⅴ一区二区三区四区| 91精品国产麻豆| 亚洲精品免费在线观看| 成人一级片网址| 日韩你懂的电影在线观看| 亚洲一区二区五区| 成人高清av在线| 久久综合九色欧美综合狠狠| 日韩在线卡一卡二| 在线国产亚洲欧美| **性色生活片久久毛片| 国产精品一级片在线观看| 日韩一区二区三区av| 亚洲妇女屁股眼交7| 99久久婷婷国产综合精品| 国产亚洲精品7777| 久久99热99| 欧美成人在线直播| 日韩在线观看一区二区| 欧美日韩成人一区| 亚洲国产精品一区二区www在线| 91年精品国产| 亚洲色图色小说| 99精品一区二区三区| 亚洲国产成人一区二区三区| 国产一区二区福利视频| 精品国产乱子伦一区| 麻豆视频观看网址久久| 777xxx欧美| 日本91福利区| 日韩小视频在线观看专区| 日精品一区二区| 91精品国产色综合久久ai换脸| 亚洲国产成人高清精品| 欧美在线一二三四区| 亚洲麻豆国产自偷在线| 91婷婷韩国欧美一区二区| 中文字幕永久在线不卡| 99国产麻豆精品| 亚洲天堂2014| 在线观看成人免费视频| 亚洲自拍偷拍网站| 欧美放荡的少妇| 免费欧美在线视频| 精品国产乱码久久久久久蜜臀| 看片网站欧美日韩| 亚洲精品一区二区三区四区高清| 国产一区二区在线电影| 日本一区二区三区四区 | 国产精品嫩草影院com| 成人在线综合网| 亚洲欧美一区二区视频| 91国偷自产一区二区三区观看| 亚洲午夜成aⅴ人片| 欧美一区二区日韩一区二区| 毛片av一区二区三区| 久久免费精品国产久精品久久久久| 国产一区二区精品久久| 成人欧美一区二区三区黑人麻豆 | jizzjizzjizz欧美| 亚洲美女视频在线观看| 欧美日韩精品一区视频| 美国一区二区三区在线播放| 精品国产一区二区三区久久影院| 国产成人欧美日韩在线电影| 136国产福利精品导航| 欧美三区在线视频| 久热成人在线视频| 中文字幕第一区综合| 日本乱人伦一区| 另类小说一区二区三区| 国产免费久久精品| 在线日韩国产精品| 久久99国产精品麻豆| 国产精品污www在线观看| 日本高清视频一区二区| 日韩国产欧美视频| 国产亚洲午夜高清国产拍精品| 色婷婷综合五月| 蜜臀av在线播放一区二区三区| 亚洲国产成人自拍| 欧美精品国产精品| 国产精品一二二区| 亚洲午夜私人影院| 亚洲精品一区在线观看| 色综合天天综合| 老司机午夜精品| 亚洲欧洲精品天堂一级| 欧美一区二区三区免费视频| 成人午夜精品一区二区三区| 亚洲成人精品影院| 国产欧美一区视频| 精品视频一区二区不卡| 国产成人在线网站| 亚洲成人免费视| 国产精品久久毛片| 欧美一区二区三区思思人| 9i在线看片成人免费| 全国精品久久少妇| 亚洲蜜臀av乱码久久精品蜜桃| 日韩无一区二区| 日本精品视频一区二区| 国产福利一区二区| 日日噜噜夜夜狠狠视频欧美人 | 欧美剧情片在线观看| 国产精品1区2区| 日韩国产一二三区| 一区二区三区在线看| 国产午夜精品久久久久久免费视| 欧美日韩中文一区| 成人黄页毛片网站| 久久www免费人成看片高清| 亚洲国产日韩a在线播放| 欧美韩国日本一区| 日韩精品综合一本久道在线视频| 91色porny| 成人网男人的天堂| 精品一区二区三区在线观看国产| 亚洲综合视频网| 综合久久给合久久狠狠狠97色 | 欧美色图在线观看| 96av麻豆蜜桃一区二区| 国产毛片精品国产一区二区三区| 日韩在线一二三区| 亚洲一级电影视频| 亚洲精品免费一二三区| 国产精品久久久久一区二区三区 | 精品成人在线观看| 欧美日韩极品在线观看一区| 色综合天天综合在线视频| 国产69精品久久777的优势| 美女视频黄 久久| 视频一区欧美精品| 视频在线观看国产精品| 一卡二卡三卡日韩欧美| 日韩理论电影院| 国产精品动漫网站| 国产亲近乱来精品视频| 久久色在线视频| 26uuu国产电影一区二区| 正在播放亚洲一区| 91精品国产综合久久久蜜臀粉嫩| 在线观看日产精品| 色综合天天性综合| 91在线观看成人| 色综合久久综合网97色综合| 99久久99久久久精品齐齐| 暴力调教一区二区三区| 成人福利视频在线| 99久久精品免费看国产免费软件| 成人av网在线| 91在线观看美女| 色网综合在线观看| 色综合久久中文字幕综合网| 99re这里只有精品视频首页| 91毛片在线观看| 色爱区综合激月婷婷| 在线观看www91| 欧美日韩久久不卡| 欧美一区午夜视频在线观看| 欧美一卡2卡3卡4卡| 日韩一区二区三区电影在线观看| 日韩精品一区在线观看| 日韩美女在线视频| 久久久国际精品| 国产精品久久久久影视| 亚洲靠逼com| 亚洲成av人片在线| 人人精品人人爱| 国产精品一区在线观看乱码 | 午夜精品久久久久久久99樱桃| 香蕉久久夜色精品国产使用方法| 午夜久久久久久电影| 日本不卡视频一二三区| 国产九色sp调教91| 成人福利电影精品一区二区在线观看| 99久久er热在这里只有精品66| 在线看一区二区| 91精品一区二区三区久久久久久 | 欧美日韩国产在线观看| 欧美一区二区三区影视| 久久精品一区二区| 日韩毛片在线免费观看| 亚洲主播在线观看| 免费成人在线视频观看| 国产成人精品综合在线观看| 色综合久久久久久久| 538prom精品视频线放| 欧美哺乳videos| 日韩一区在线免费观看| 三级不卡在线观看| 国产91在线看| 欧美体内she精视频| 精品成人佐山爱一区二区|