亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? trips.html

?? 模糊控制工具箱,很好用的,有相應(yīng)的說明文件,希望對大家有用!
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>Modeling Traffic Patterns using Subtractive Clustering</title>      <meta name="generator" content="MATLAB 7.1">      <meta name="date" content="2005-07-28">      <meta name="m-file" content="trips">      <link rel="stylesheet" type="text/css" href="../../../matlab/demos/private/style.css">   </head>   <body>      <div class="header">         <div class="left"><a href="matlab:edit trips">Open trips.m in the Editor</a></div>         <div class="right"><a href="matlab:echodemo trips">Run in the Command Window</a></div>      </div>      <div class="content">         <h1>Modeling Traffic Patterns using Subtractive Clustering</h1>         <introduction>            <p>This demo demonstrates the use of subtractive clustering to model traffic patterns in an area based on the area's demographics.</p>         </introduction>         <h2>Contents</h2>         <div>            <ul>               <li><a href="#1">The problem: Understanding Traffic Patterns</a></li>               <li><a href="#2">The Data</a></li>               <li><a href="#6">Why clustering and fuzzy logic?</a></li>               <li><a href="#7">Clustering the data</a></li>               <li><a href="#13">Generating the Fuzzy Inference System (FIS)</a></li>               <li><a href="#15">Understanding the clusters-FIS relationship</a></li>               <li><a href="#22">Using the FIS for data exploration</a></li>               <li><a href="#27">Conclusion</a></li>               <li><a href="#28">Glossary</a></li>            </ul>         </div>         <h2>The problem: Understanding Traffic Patterns<a name="1"></a></h2>         <p>In this demo we attempt to understand the relationship between the number of automobile trips generated from an area and the            area's demographics. Demographic and trip data were collected from traffic analysis zones in New Castle County, Delaware.            Five demographic factors are considered: population, number of dwelling units, vehicle ownership, median household income            and total employment.         </p>         <p>Hereon, the demographic factors will be addressed as inputs and the trips generated will be addressed as output. Hence our            problem has five input variables (five demographic factors) and one output variable (num of trips generated).         </p>         <h2>The Data<a name="2"></a></h2>         <p>We will now load the input and output variables used for this demo into the workspace.</p><pre class="codeinput">tripdata</pre><p>Two variables are loaded in the workspace, <tt>datin</tt> and <tt>datout</tt>. <tt>datin</tt> has 5 columns representing the 5 input variables and <tt>datout</tt> has 1 column representing the 1 output variable.         </p><pre class="codeinput">subplot(2,1,1)plot(datin)legend(<span class="string">'population'</span>, <span class="string">'num. of dwelling units'</span>, <span class="string">'vehicle ownership'</span>,<span class="keyword">...</span>    <span class="string">'median household income'</span>, <span class="string">'total employment'</span>);title(<span class="string">'Input Variables'</span>)subplot(2,1,2)plot(datout)legend(<span class="string">'num of trips'</span>);title(<span class="string">'Output Variable'</span>)</pre><img vspace="5" hspace="5" src="trips_01.png"> <p><b>Figure 1:</b> Input and Output variables         </p>         <p>The number of rows in <tt>datin</tt> and <tt>datout</tt>, 75, represent the number of observations or samples or datapoints available. A row in <tt>datin</tt>, say row 11, constitutes a set of observed values of the 5 input variables (population, number of dwelling units, vehicle            ownership, median household income and total employment) and the corresponding row, row 11, in <tt>datout</tt> represents the observed value for the number of trips generated given the observations made for the input variables.         </p>         <p>We will model the relationship between the input variables (demographics) and the output variable (trips) by first clustering            the data. The cluster centers will then be used as a basis to define a Fuzzy Inference System (FIS) which can then be used            to explore and understand traffic patterns.         </p>         <h2>Why clustering and fuzzy logic?<a name="6"></a></h2>         <p>Clustering can be a very effective technique to identify natural groupings in data from a large data set, thereby allowing            concise representation of relationships embedded in the data. In this example, clustering allows us to group traffic patterns            into broad categories hence allowing for easier understandability.         </p>         <p>Fuzzy logic is an effective paradigm to handle uncertainty. It can be used to take fuzzy or imprecise observations for inputs            and yet arrive at crisp and precise values for outputs. Also, the <a href="matlab:helpview([docroot,'/toolbox/fuzzy/fuzzy.map'],'fuzzy_inference_systems')">Fuzzy Inference System (FIS)</a> is a simple and commonsensical way to build systems without using complex analytical equations.         </p>         <p>In our example, fuzzy logic will be employed to capture the broad categories identified during clustering into a Fuzzy Inference            System (FIS). The FIS will then act as a model that will reflect the relationship between demographics and auto trips.         </p>         <p>Clustering and fuzzy logic together provide a simple yet powerful means to model the traffic relationship that we want to            study.         </p>         <h2>Clustering the data<a name="7"></a></h2>         <p><tt>subclust</tt> is the function that implements a clustering technique called subtractive clustering. Subtractive clustering, [Chi94], is            a fast, one-pass algorithm for estimating the number of clusters and the cluster centers in a dataset.         </p>         <p>In this section, we will see how subtractive clustering is performed on a dataset and in the next section we will explore            independently how clustering is used to build a Fuzzy Inference System(FIS).         </p><pre class="codeinput">[C,S] = subclust([datin datout],0.5);</pre><p>The first argument to the <tt>subclust</tt> function is the data to be clustered. The second argument to the function is the <tt>radii</tt> which marks a cluster's radius of influence in the <a href="#28">input space</a>.         </p>         <p>The variable <tt>C</tt> now holds all the centers of the clusters that have been identified by <tt>subclust</tt>. Each row of <tt>C</tt> contains the position of a cluster.         </p><pre class="codeinput">C</pre><pre class="codeoutput">C =    1.8770    0.7630    0.9170   18.7500    1.5650    2.1830    0.3980    0.1510    0.1320    8.1590    0.6250    0.6480    3.1160    1.1930    1.4870   19.7330    0.6030    2.3850</pre><p>In this case, <tt>C</tt> has 3 rows representing 3 clusters with 6 columns representing the positions of the clusters in each dimension.         </p>         <p><tt>subclust</tt> has hence identified 3 natural groupings in the demographic-trip dataset being considered. The following plot shows how the            clusters have been identified in the 'total employment' and 'trips' dimensions of the input space.         </p><pre class="codeinput">clf;plot(datin(:,5), datout(:,1), <span class="string">'.'</span>, C(:,5),C(:,6),<span class="string">'r*'</span>)legend(<span class="string">'Data points'</span>, <span class="string">'Cluster centers'</span>, <span class="string">'Location'</span>, <span class="string">'SouthEast'</span>)xlabel(<span class="string">'total employment'</span>)ylabel(<span class="string">'num of trips'</span>)title(<span class="string">'Data and Clusters in selected two dimensions of the input space'</span>)</pre><img vspace="5" hspace="5" src="trips_02.png"> <p><b>Figure 2:</b> Cluster centers in the 'total employment' and 'trips' dimensions of the input space         </p>         <p>The variable <tt>S</tt> contains the sigma values that specify the range of influence of a cluster center in each of the data dimensions. All cluster            centers share the same set of sigma values.         </p><pre class="codeinput">S</pre><pre class="codeoutput">S =    1.1621    0.4117    0.6555    7.6139    2.8931    1.4395</pre><p><tt>S</tt> in this case has 6 columns representing the influence of the cluster centers on each of the 6 dimensions.         </p>         <h2>Generating the Fuzzy Inference System (FIS)<a name="13"></a></h2>         <p><tt>genfis2</tt> is the function that creates a FIS using subtractive clustering. <tt>genfis2</tt> employs <tt>subclust</tt> behind the scenes to cluster the data and uses the cluster centers and their range of influences to build a FIS which will            then be used to explore and understand traffic patterns.         </p><pre class="codeinput">myfis=genfis2(datin,datout,0.5);</pre><p>The first argument is the input variables matrix <tt>datin</tt>, the second argument is the output variables matrix <tt>datout</tt> and the third argument is the <tt>radii</tt> that should be used while using <tt>subclust</tt>.         </p>         <p><tt>genfis2</tt> assigns default names for inputs, outputs and membership functions. For our understanding it is beneficial to rename the            inputs and outputs meaningfully.         </p><pre class="codeinput"><span class="comment">% Assign names to inputs and outputs</span>myfis = setfis(myfis, <span class="string">'input'</span>,1,<span class="string">'name'</span>,<span class="string">'population'</span>);myfis = setfis(myfis, <span class="string">'input'</span>,2,<span class="string">'name'</span>,<span class="string">'dwelling units'</span>);myfis = setfis(myfis, <span class="string">'input'</span>,3,<span class="string">'name'</span>,<span class="string">'num vehicles'</span>);myfis = setfis(myfis, <span class="string">'input'</span>,4,<span class="string">'name'</span>,<span class="string">'income'</span>);myfis = setfis(myfis, <span class="string">'input'</span>,5,<span class="string">'name'</span>,<span class="string">'employment'</span>);myfis = setfis(myfis, <span class="string">'output'</span>,1,<span class="string">'name'</span>,<span class="string">'num of trips'</span>);</pre><h2>Understanding the clusters-FIS relationship<a name="15"></a></h2>         <p>A FIS is composed of inputs, outputs and rules. Each input and output can have any number of membership functions. The rules            dictate the behavior of the fuzzy system based on inputs, outputs and membership functions. <tt>genfis2</tt> constructs the FIS in an attempt to capture the the position and influence of each cluster in the input space.         </p>         <p><tt>myfis</tt> is the FIS that <tt>genfis2</tt> has generated. Since the dataset has 5 input variables and 1 output variable, <tt>genfis2</tt> constructs a FIS with 5 inputs and 1 output. Each input and output has as many membership functions as the number of clusters            that <tt>subclust</tt> has identified. As seen previously, for the current dataset <tt>subclust</tt> identified 3 clusters. Therefore each input and output will be characterized by 3 membership functions. Also, the number            of rules equals the number of clusters and hence 3 rules are created.         </p>         <p>We can now probe the FIS to understand how the clusters got converted internally into membership functions and rules.</p><pre class="codeinput">fuzzy(myfis)</pre><img vspace="5" hspace="5" src="trips_03.png"> <p><b>Figure 3:</b> The graphical editor for building Fuzzy Inference Systems (FIS)         </p>         <p><tt>fuzzy</tt> is the function that launches the graphical editor for building fuzzy systems. <tt>fuzzy(myfis)</tt> launches the editor set up to edit <tt>myfis</tt>, the FIS that we just generated. As can be seen, the FIS has 5 inputs and 1 output with the inputs mapped to the outputs            through a rulebase (white box in the figure).         </p>         <p>Let's now try to analyze how the cluster centers and the membership functions are related.</p><pre class="codeinput">mfedit(myfis)</pre><img vspace="5" hspace="5" src="trips_04.png"> <p><b>Figure 4:</b> The graphical membership function editor         </p>         <p><tt>mfedit(myfis)</tt> launches the graphical membership function editor. It can also be launched by clicking on the inputs or the outputs in the            FIS editor launched by <tt>fuzzy</tt>.         </p>         <p>Notice that all the inputs and outputs have exactly 3 membership functions. The 3 membership functions represent the 3 clusters            that were identified by <tt>subclust</tt>.         </p>         <p>Each input in the FIS represents an input variable in the input dataset <tt>datin</tt> and each output in the FIS represents an output variable in the output dataset <tt>datout</tt>.         </p>         <p>By default, the first membership function, <tt>in1cluster1</tt>, of the first input <tt>population</tt> would be selected in the membership function editor. Notice that the membership function type is "gaussmf" (gaussian type            membership function) and the parameters of the membership function are <tt>[1.162 1.877]</tt>, where <tt>1.162</tt> represents the spread coefficient of the gaussian curve and <tt>1.877</tt> represents the center of the gaussian curve. <tt>in1cluster1</tt> captures the position and influence of the first cluster for the input variable <tt>population</tt>. <tt>(C(1,1)=1.877, S(1)=1.1621 )</tt></p>         <p>Similarly, the position and influence of the other 2 clusters for the input variable <tt>population</tt> are captured by the other two membership functions <tt>in1cluster2</tt> and <tt>in1cluster3</tt>.         </p>         <p>The rest of the 4 inputs follow the exact pattern mimicking the position and influence of the 3 clusters along their respective            dimensions in the dataset.         </p>         <p>Now, let's explore how the fuzzy rules are constructed.</p><pre class="codeinput">ruleedit(myfis)</pre><img vspace="5" hspace="5" src="trips_05.png"> <p><b>Figure 5:</b> The graphical rule editor         </p>         <p><tt>ruleedit</tt> is the graphical fuzzy rule editor. As you can notice, there are exactly three rules. Each rule attempts to map a cluster            in the input space to a cluster in the output space.         </p>         <p>The first rule can be explained simply as follows. If the inputs to the FIS, <tt>population</tt>, <tt>dwelling units</tt>, <tt>num vehicles</tt>, <tt>income</tt>, and <tt>employment</tt>, strongly belong to their respective <tt>cluster1</tt> membership functions then the output, <tt>num of trips</tt>, must strongly belong to its <tt>cluster1</tt> membership function. The (1) at the end of the rule is to indicate that the rule has  a weight or an importance of "1". Weights            can take any value between 0 and 1. Rules with lesser weights will count for less in the final output.         </p>         <p>The significance of the rule is that it succinctly maps cluster 1 in the input space to cluster 1 in the output space. Similarly            the other two rules map cluster 2 and cluster 3 in the input space to cluster 2 and cluster 3 in the output space.         </p>         <p>If a datapoint closer to the first cluster, or in other words having strong membership to the first cluster, is fed as input            to <tt>myfis</tt> then rule1 will fire with more <a href="#28">firing strength</a> than the other two rules. Similarly, an input with strong membership to the second cluster will fire the second rule will            with more firing strength than the other two rules and so on.         </p>         <p>The output of the rules (firing strengths) are then used to generate the output of the FIS through the output membership functions.</p>         <p>The one output of the FIS, <tt>num of trips</tt>, has 3 linear membership functions representing the 3 clusters identified by <tt>subclust</tt>. The coefficients of the linear membership functions though are not taken directly from the cluster centers. Instead, they            are estimated from the dataset using least squares estimation technique.         </p>         <p>All 3 membership functions in this case will be of the form <tt>a*population + b*dwelling units + c*num vehicles + d*income + e*employment + f</tt>, where <tt>a</tt>, <tt>b</tt>, <tt>c</tt>, <tt>d</tt>, <tt>e</tt> and <tt>f</tt> represent the coefficients of the linear membership function. Click on any of the <tt>num of trips</tt> membership functions in the membership function editor to observe the parameters of these linear membership functions.         </p>         <h2>Using the FIS for data exploration<a name="22"></a></h2>         <p>You can now use the FIS that has been constructed to understand the underlying dynamics of relationship being modeled.</p><pre class="codeinput">surfview(myfis)</pre><img vspace="5" hspace="5" src="trips_06.png"> <p><b>Figure 6:</b> Input-Output Surface viewer         </p>         <p><tt>surfview</tt> is the surface viewer that helps view the input-output surface of the fuzzy system. In other words, this tool simulates the            response of the fuzzy system for the entire range of inputs that the system is configured to work for. Thereafter, the output            or the response of the FIS to the inputs are plotted against the inputs as a surface. This visualization is very helpful to            understand how the system is going to behave for the entire range of values in the input space.

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲线精品一区二区三区八戒| 国产日韩精品一区| 一本高清dvd不卡在线观看| 国产露脸91国语对白| 久久国产生活片100| 国产主播一区二区三区| 久久99精品久久久久久久久久久久| 蜜臀久久99精品久久久画质超高清 | 欧美另类高清zo欧美| 欧美性做爰猛烈叫床潮| 欧洲视频一区二区| 欧美日韩专区在线| 日韩精品在线网站| 国产亚洲人成网站| 亚洲欧美一区二区三区极速播放| 一区二区三区鲁丝不卡| 亚洲6080在线| 国产一区二区中文字幕| 97精品超碰一区二区三区| 欧美性感一类影片在线播放| 4438x成人网最大色成网站| 欧美一区二区播放| 中文字幕+乱码+中文字幕一区| 国产精品福利一区二区| 亚洲综合图片区| 精品一区二区免费看| 成人性视频网站| 56国语精品自产拍在线观看| 久久理论电影网| 最新中文字幕一区二区三区| 亚洲高清视频在线| 夜夜嗨av一区二区三区四季av| 亚洲一区二区三区在线播放| 日韩成人午夜精品| 国产乱码精品一品二品| 色综合亚洲欧洲| 日韩欧美在线一区二区三区| 久久久久久久久久久久电影| 亚洲日本va午夜在线影院| 午夜精品福利在线| 国产精品资源站在线| 91久久精品国产91性色tv| 欧美喷水一区二区| 久久久久九九视频| 亚洲欧美日韩国产成人精品影院 | 国产精品电影一区二区三区| 中文字幕中文字幕中文字幕亚洲无线| 一区二区在线免费| 国产精品资源网站| 欧美做爰猛烈大尺度电影无法无天| 欧美日韩精品一区二区天天拍小说 | 久久男人中文字幕资源站| 亚洲欧美自拍偷拍| 美女高潮久久久| 不卡视频一二三四| 欧美精品一区二区三区在线播放 | 久久久久久久久久久久久久久99 | 激情六月婷婷综合| 色狠狠综合天天综合综合| 精品剧情在线观看| 亚洲美女在线国产| 国产综合色视频| 欧美日韩精品一区二区三区四区 | 亚洲人亚洲人成电影网站色| 夜夜亚洲天天久久| 国产一区二区在线看| 在线视频综合导航| 国产日产欧产精品推荐色| 性做久久久久久久免费看| 本田岬高潮一区二区三区| 欧美一区二区三区不卡| 夜夜夜精品看看| 色综合色综合色综合色综合色综合| 精品国产乱码久久久久久牛牛 | 五月婷婷色综合| 91在线观看视频| 国产精品激情偷乱一区二区∴| 免费人成在线不卡| 欧美日本高清视频在线观看| 亚洲人快播电影网| a亚洲天堂av| 国产精品毛片高清在线完整版| 精品一区二区三区香蕉蜜桃 | 99热99精品| 2024国产精品| 日韩av一区二区在线影视| 欧美一级午夜免费电影| 午夜婷婷国产麻豆精品| 欧美日本韩国一区| 天堂va蜜桃一区二区三区漫画版| 91高清在线观看| 亚洲一二三专区| 色婷婷亚洲精品| 樱花草国产18久久久久| 91久久精品网| 午夜精品一区二区三区电影天堂| 欧美吞精做爰啪啪高潮| 亚洲一区二区在线播放相泽| 在线观看欧美精品| 亚洲永久精品大片| 7777精品久久久大香线蕉| 五月婷婷综合在线| 日韩久久久精品| 国产主播一区二区| 国产精品电影一区二区三区| 99精品视频一区二区| 亚洲欧美日韩在线| 色综合久久久久综合体| 亚洲国产精品ⅴa在线观看| 成人免费看的视频| 亚洲精品国产无天堂网2021| 欧美日韩欧美一区二区| 免费日韩伦理电影| 久久亚洲综合色一区二区三区| 国产一区二区精品久久99| 亚洲美女少妇撒尿| 国内外成人在线视频| 6080午夜不卡| 日韩av网站免费在线| 欧美精品v日韩精品v韩国精品v| 亚洲国产成人va在线观看天堂| 欧美美女一区二区在线观看| 亚洲国产综合人成综合网站| 日韩一区二区免费电影| 国产麻豆91精品| 国产精品久线观看视频| aaa欧美色吧激情视频| 成人欧美一区二区三区在线播放| 日本大香伊一区二区三区| 首页综合国产亚洲丝袜| 26uuu亚洲综合色| 色婷婷综合久久久久中文一区二区 | 欧美一区二区日韩一区二区| 老司机精品视频在线| 日韩欧美一级精品久久| 91首页免费视频| 麻豆91免费观看| 一区二区三区91| 久久综合久久久久88| 色av一区二区| 国产一区二区三区香蕉| 亚洲一区二区三区四区不卡| 精品成人一区二区三区四区| 色一情一乱一乱一91av| 久久国产精品99精品国产| 亚洲最大的成人av| 久久精品亚洲精品国产欧美kt∨ | 亚洲嫩草精品久久| 精品三级av在线| 欧美午夜精品理论片a级按摩| 国产综合色在线| 午夜亚洲国产au精品一区二区| 欧美激情艳妇裸体舞| 精品国产3级a| 欧美一区二区免费观在线| 在线免费精品视频| 成人sese在线| 国产露脸91国语对白| 亚洲午夜久久久久中文字幕久| 日韩区在线观看| 日韩亚洲欧美一区二区三区| 欧美亚洲国产一区二区三区va | 欧美一区二区三区小说| 色婷婷久久久亚洲一区二区三区 | 亚洲3atv精品一区二区三区| 国产无人区一区二区三区| 日韩一区二区三区免费观看| 欧日韩精品视频| 欧美中文字幕一区二区三区 | 成人白浆超碰人人人人| 国产福利视频一区二区三区| 国产精品亚洲人在线观看| 久久福利资源站| 韩国成人精品a∨在线观看| 老汉av免费一区二区三区 | 欧美日韩精品电影| 欧美色涩在线第一页| 欧美三级蜜桃2在线观看| 在线看日本不卡| 欧美日韩大陆在线| 欧美色网一区二区| 欧美日韩三级一区| 欧美肥妇free| 欧美精品一区视频| 亚洲国产精品精华液ab| 中文字幕中文字幕一区| 欧美国产精品一区二区三区| 精品福利一区二区三区| 26uuuu精品一区二区| 国产三级欧美三级| 中文字幕在线不卡视频| 伊人一区二区三区| 日韩制服丝袜先锋影音| 九九视频精品免费| 国产精品99久| 国产乱码精品1区2区3区| 成人在线一区二区三区| 欧美性受xxxx黑人xyx性爽| 在线91免费看| 26uuu精品一区二区|