亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? trips.html

?? 模糊控制工具箱,很好用的,有相應的說明文件,希望對大家有用!
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
         </p>         <p>In the plot above the surface viewer shows the output surface for two inputs <tt>population</tt> and <tt>num of dwelling units</tt>. As you can see the number of auto trips increases with increase in population and dwelling units, which sounds very rational.            You can change the inputs in the X and Y drop-down boxes to observe the output surface with respect to the inputs you choose.         </p><pre class="codeinput">ruleview(myfis)</pre><img vspace="5" hspace="5" src="trips_07.png"> <p><b>Figure 7:</b> Rule viewer that simulates the entire fuzzy inference process         </p>         <p><tt>ruleview</tt> is the graphical simulator for simulating the FIS response for specific values of the input variables. Now, having built            the fuzzy system, if we want to understand how many trips will occur for a particular demographic setup, say an area with            a particular population, a certain number of dwelling units and so on, this tool will help you simulate the FIS response for            the input of your choice.         </p>         <p>Another feature of this GUI tool is, it gives you a snapshot of the entire fuzzy inference process, right from how the membership            functions are being satisfied in every rule to how the final output is being generated through <a href="#28">defuzzification</a>.         </p>         <h2>Conclusion<a name="27"></a></h2>         <p>This example has attempted to convey how clustering and fuzzy logic can be employed as effective techniques for data modeling            and analysis.         </p>         <p>Fuzzy logic has also found various applications in other areas of technology like non-linear control, automatic control, signal            processing, system identification, pattern recognition, time series prediction, data mining, financial applications etc.,         </p>         <p>Explore other demos and the documentation for more insight into fuzzy logic and its applications.</p>         <h2>Glossary<a name="28"></a></h2>         <p><b>input space</b> - it is a term used to define the range of all possible values in the dataset. When using <tt>subclust</tt> the input space refers to the entire range of values between the maximum and minimum in each dimension (column) of the dataset.         </p>         <p><b>defuzzification</b> - the process of transforming a fuzzy output of a fuzzy inference system into a crisp output.         </p>         <p><b>firing strength</b> - The degree to which the antecedent part of a fuzzy rule is satisfied. Also known as degree of fulfillment.         </p>         <p><b>fuzzy inference system (FIS)</b> - The overall name for a system that uses fuzzy reasoning to map an input space to an output space         </p>         <p><b>Reference:</b></p>         <p>[Chi94] - S. Chiu, "Fuzzy Model Identification Based on Cluster Estimation," J. of Intelligent &amp; Fuzzy Systems, Vol. 2, No.            3, 1994.         </p>         <p class="footer">Copyright 1994-2005 The MathWorks, Inc.<br>            Published with MATLAB&reg; 7.1<br></p>      </div>      <!--##### SOURCE BEGIN #####%% Modeling Traffic Patterns using Subtractive Clustering% This demo demonstrates the use of subtractive clustering to model traffic% patterns in an area based on the area's demographics.%% Copyright 1994-2005 The MathWorks, Inc.% $Revision: 1.12.2.2.2.1 $Date: 2005/07/17 06:06:22 $%%% The problem: Understanding Traffic Patterns% In this demo we attempt to understand the relationship between the number% of automobile trips generated from an area and the area's demographics.% Demographic and trip data were collected from traffic analysis zones% in New Castle County, Delaware. Five demographic factors are considered:% population, number of dwelling units, vehicle ownership, median household% income and total employment. %% Hereon, the demographic factors will be addressed as inputs and the% trips generated will be addressed as output. Hence our problem has five% input variables (five demographic factors) and one output variable% (num of trips generated).%%% The Data% We will now load the input and output variables used for this demo into% the workspace. % tripdata%%% Two variables are loaded in the workspace, |datin| and |datout|. |datin|% has 5 columns representing the 5 input variables and |datout| has 1% column representing the 1 output variable.%subplot(2,1,1)plot(datin)legend('population', 'num. of dwelling units', 'vehicle ownership',...    'median household income', 'total employment');title('Input Variables')subplot(2,1,2)plot(datout)legend('num of trips');title('Output Variable')%%% *Figure 1:* Input and Output variables %%% The number of rows in |datin| and |datout|, 75, represent the number of% observations or samples or datapoints available. A row in |datin|, say% row 11, constitutes a set of observed values of the 5 input variables% (population, number of dwelling units, vehicle ownership, median% household income and total employment) and the corresponding row, row 11,% in |datout| represents the observed value for the number of trips% generated given the observations made for the input variables.%% We will model the relationship between the input variables (demographics)% and the output variable (trips) by first clustering the data. The cluster% centers will then be used as a basis to define a Fuzzy Inference System% (FIS) which can then be used to explore and understand traffic patterns.%%% Why clustering and fuzzy logic?% Clustering can be a very effective technique to identify natural% groupings in data from a large data set, thereby allowing concise% representation of relationships embedded in the data. In this example,% clustering allows us to group traffic patterns into broad categories% hence allowing for easier understandability.%% Fuzzy logic is an effective paradigm to handle uncertainty. It can be% used to take fuzzy or imprecise observations for inputs and yet arrive at% crisp and precise values for outputs. Also, the% <matlab:helpview([docroot,'/toolbox/fuzzy/fuzzy.map'],'fuzzy_inference_systems') Fuzzy Inference System (FIS)> % is a simple and commonsensical way to build systems without using complex% analytical equations.%% In our example, fuzzy logic will be employed to capture the broad% categories identified during clustering into a Fuzzy Inference System% (FIS). The FIS will then act as a model that will reflect the% relationship between demographics and auto trips. %% Clustering and fuzzy logic together provide a simple yet powerful means% to model the traffic relationship that we want to study.%%% Clustering the data% |subclust| is the function that implements a clustering technique called% subtractive clustering. Subtractive clustering, [Chi94], is a fast,% one-pass algorithm for estimating the number of clusters and the cluster% centers in a dataset.%% In this section, we will see how subtractive clustering is performed on a% dataset and in the next section we will explore independently how% clustering is used to build a Fuzzy Inference System(FIS).[C,S] = subclust([datin datout],0.5);%%% The first argument to the |subclust| function is the data to be% clustered. The second argument to the function is the |radii| which% marks a cluster's radius of influence in the <#28 input space>.%% The variable |C| now holds all the centers of the clusters that have been% identified by |subclust|. Each row of |C| contains the position of a% cluster.C%% % In this case, |C| has 3 rows representing 3 clusters with 6 columns% representing the positions of the clusters in each dimension.%% |subclust| has hence identified 3 natural groupings in the% demographic-trip dataset being considered. The following plot shows how% the clusters have been identified in the 'total employment' and 'trips'% dimensions of the input space.clf;plot(datin(:,5), datout(:,1), '.', C(:,5),C(:,6),'r*')legend('Data points', 'Cluster centers', 'Location', 'SouthEast')xlabel('total employment')ylabel('num of trips')title('Data and Clusters in selected two dimensions of the input space')%%% *Figure 2:* Cluster centers in the 'total employment' and 'trips'% dimensions of the input space%%% The variable |S| contains the sigma values that specify the range of% influence of a cluster center in each of the data dimensions. All cluster% centers share the same set of sigma values.S%%% |S| in this case has 6 columns representing the influence of the cluster% centers on each of the 6 dimensions.%%% Generating the Fuzzy Inference System (FIS)%% |genfis2| is the function that creates a FIS using subtractive% clustering. |genfis2| employs |subclust| behind the scenes to cluster the% data and uses the cluster centers and their range of influences to build% a FIS which will then be used to explore and understand traffic patterns.myfis=genfis2(datin,datout,0.5);%%% The first argument is the input variables matrix |datin|, the second% argument is the output variables matrix |datout| and the third argument% is the |radii| that should be used while using |subclust|.%% |genfis2| assigns default names for inputs, outputs and membership% functions. For our understanding it is beneficial to rename the inputs% and outputs meaningfully.% Assign names to inputs and outputsmyfis = setfis(myfis, 'input',1,'name','population');myfis = setfis(myfis, 'input',2,'name','dwelling units');myfis = setfis(myfis, 'input',3,'name','num vehicles');myfis = setfis(myfis, 'input',4,'name','income');myfis = setfis(myfis, 'input',5,'name','employment');

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人黄色av电影| 欧美日韩视频不卡| 日本不卡123| 国产精品不卡一区| 欧美xxxxx裸体时装秀| 色婷婷激情一区二区三区| 激情另类小说区图片区视频区| 国产精品高潮呻吟久久| 精品国产污污免费网站入口| 91成人免费在线| 成人18精品视频| 日韩电影在线一区| 亚洲一区精品在线| 亚洲欧美成人一区二区三区| 国产欧美一区二区三区沐欲| 欧美一区二区美女| 精品污污网站免费看| 99re8在线精品视频免费播放| 国产一区高清在线| 日韩不卡一区二区| 天天做天天摸天天爽国产一区| 中文字幕一区日韩精品欧美| 久久亚洲春色中文字幕久久久| 欧美日韩国产高清一区二区三区 | 亚洲成人免费观看| 日韩美女精品在线| 国产精品国产自产拍在线| 久久久精品人体av艺术| 3d动漫精品啪啪| 91精品国产福利在线观看| 色狠狠桃花综合| 色婷婷狠狠综合| 91丨九色丨蝌蚪丨老版| 不卡在线视频中文字幕| 成人av网址在线观看| 国产成人精品亚洲午夜麻豆| 国产久卡久卡久卡久卡视频精品| 久久激情五月激情| 另类人妖一区二区av| 免费观看30秒视频久久| 毛片av一区二区| 久草这里只有精品视频| 国产最新精品精品你懂的| 国内国产精品久久| 国产一区二区三区四| 国产自产v一区二区三区c| 国产在线精品一区二区| 粉嫩欧美一区二区三区高清影视| 成人午夜大片免费观看| 99re成人精品视频| 欧美三级中文字幕| 欧美精品aⅴ在线视频| 欧美电影免费观看高清完整版在线| 91精品国模一区二区三区| 日韩欧美中文字幕一区| 久久午夜国产精品| 中国av一区二区三区| 亚洲欧美自拍偷拍| 亚洲午夜电影在线| 麻豆精品新av中文字幕| 国产成人精品免费网站| 不卡av在线网| 欧美日韩一区二区欧美激情| 欧美一级高清大全免费观看| 久久天天做天天爱综合色| 国产欧美视频一区二区| 亚洲三级电影全部在线观看高清| 亚洲一区在线观看免费| 日本不卡高清视频| 丁香激情综合五月| 欧美色图第一页| 精品久久久三级丝袜| 亚洲欧洲精品天堂一级| 午夜精品久久久久久久久久久 | 美女在线观看视频一区二区| 国产精品自产自拍| 色猫猫国产区一区二在线视频| 欧美日韩精品一区二区三区蜜桃| www成人在线观看| 亚洲精品欧美激情| 久久国产福利国产秒拍| 99九九99九九九视频精品| 制服丝袜成人动漫| 成人免费在线播放视频| 日本亚洲三级在线| 99国产精品久久久| 精品国产凹凸成av人导航| 18成人在线观看| 另类小说色综合网站| 色婷婷久久久综合中文字幕| 精品国产免费一区二区三区四区| 一区在线观看视频| 精品一二三四区| 91久久线看在观草草青青| 久久综合狠狠综合久久综合88| 一区av在线播放| 国产成人av福利| 91精品国产高清一区二区三区蜜臀| 国产精品久久久久影视| 亚洲成av人片在www色猫咪| 成人午夜免费视频| 精品盗摄一区二区三区| 亚洲成国产人片在线观看| 91在线观看视频| 久久久精品国产免大香伊| 日韩精品免费视频人成| 97aⅴ精品视频一二三区| 日韩免费观看2025年上映的电影| 一区二区三区在线观看视频| 国产精品一区二区你懂的| 91麻豆精品国产91久久久久久 | 亚洲精品在线观看视频| 午夜久久久久久电影| 色综合久久天天综合网| 国产农村妇女精品| 国内精品免费在线观看| 日韩美一区二区三区| 婷婷激情综合网| 欧美天堂一区二区三区| 一区二区三区四区乱视频| 97久久精品人人做人人爽| 国产精品久久久久一区| 国产成人亚洲综合a∨婷婷图片| 日韩精品一区二区三区四区视频| 日韩在线a电影| 欧美美女一区二区| 爽好多水快深点欧美视频| 欧美午夜电影在线播放| 亚洲精品v日韩精品| 91在线观看污| 亚洲激情欧美激情| 日本道在线观看一区二区| 亚洲欧美视频在线观看视频| 99在线精品观看| 中文字幕亚洲区| 91视频免费观看| 亚洲女同一区二区| 91成人网在线| 亚洲成人av资源| 欧美一卡二卡在线观看| 喷白浆一区二区| 精品国产乱码久久久久久浪潮| 日本欧美一区二区在线观看| 91精品福利在线一区二区三区 | 欧美一二三四区在线| 美女一区二区久久| 精品欧美黑人一区二区三区| 黄色精品一二区| 日本一区二区三区四区| 不卡的电影网站| 亚洲在线观看免费视频| 337p亚洲精品色噜噜噜| 久久99国产精品久久99| 久久久不卡网国产精品二区| 成人免费黄色在线| 亚洲精品少妇30p| 欧美日韩aaa| 久久99精品久久久久婷婷| 国产欧美日产一区| 在线国产电影不卡| 青青青爽久久午夜综合久久午夜| 欧美tk丨vk视频| 国产成人精品aa毛片| 亚洲综合一区二区| 91精品国产综合久久福利| 国产精品小仙女| 亚洲一区在线电影| 精品国产凹凸成av人导航| 97精品视频在线观看自产线路二| 亚洲国产视频一区二区| 欧美v国产在线一区二区三区| 成人听书哪个软件好| 一区二区三区不卡视频在线观看| 日韩一区二区三区四区| 成人免费视频播放| 日韩在线一二三区| 欧美国产一区在线| 欧美美女一区二区三区| 国产成人精品影视| 天天色综合天天| 国产精品美女久久久久av爽李琼| 在线观看一区日韩| 国产老女人精品毛片久久| 亚洲一级片在线观看| 久久久精品欧美丰满| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 日韩精品成人一区二区在线| 国产精品久久免费看| 欧美一个色资源| 在线视频综合导航| 国产成人在线视频网站| 午夜精品一区在线观看| 中文字幕一区二区在线观看| 日韩天堂在线观看| 一本大道久久a久久精二百| 国产一区二区三区四| 视频一区中文字幕国产| 亚洲精品成人在线| 国产精品系列在线| 欧美本精品男人aⅴ天堂|