亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? trips.html

?? 模糊控制工具箱,很好用的,有相應(yīng)的說明文件,希望對(duì)大家有用!
?? HTML
?? 第 1 頁(yè) / 共 3 頁(yè)
字號(hào):
myfis = setfis(myfis, 'output',1,'name','num of trips');%% Understanding the clusters-FIS relationship% A FIS is composed of inputs, outputs and rules. Each input and% output can have any number of membership functions. The rules dictate the% behavior of the fuzzy system based on inputs, outputs and membership% functions. |genfis2| constructs the FIS in an attempt to capture the the% position and influence of each cluster in the input space. % % |myfis| is the FIS that |genfis2| has generated. Since the dataset has 5% input variables and 1 output variable, |genfis2| constructs a FIS with% 5 inputs and 1 output. Each input and output has as many membership% functions as the number of clusters that |subclust| has identified. As% seen previously, for the current dataset |subclust| identified 3% clusters. Therefore each input and output will be characterized by 3% membership functions. Also, the number of rules equals the number of% clusters and hence 3 rules are created. % % We can now probe the FIS to understand how the clusters got converted% internally into membership functions and rules.fuzzy(myfis)%%% *Figure 3:* The graphical editor for building Fuzzy Inference Systems% (FIS)%%% |fuzzy| is the function that launches the graphical editor for building% fuzzy systems. |fuzzy(myfis)| launches the editor set up to edit% |myfis|, the FIS that we just generated. As can be seen, the FIS has 5% inputs and 1 output with the inputs mapped to the outputs through a% rulebase (white box in the figure).%% Let's now try to analyze how the cluster centers and the membership% functions are related.mfedit(myfis)%%% *Figure 4:* The graphical membership function editor%%% |mfedit(myfis)| launches the graphical membership function editor. It% can also be launched by clicking on the inputs or the outputs in the% FIS editor launched by |fuzzy|.% % Notice that all the inputs and outputs have exactly 3 membership% functions. The 3 membership functions represent the 3 clusters that were % identified by |subclust|.% % Each input in the FIS represents an input variable in the input dataset% |datin| and each output in the FIS represents an output variable in the% output dataset |datout|.% % By default, the first membership function, |in1cluster1|, of the first% input |population| would be selected in the membership function editor.% Notice that the membership function type is "gaussmf" (gaussian type% membership function) and the parameters of the membership function are% |[1.162 1.877]|, where |1.162| represents the spread coefficient of the% gaussian curve and |1.877| represents the center of the gaussian curve.% |in1cluster1| captures the position and influence of the first cluster% for the input variable |population|. |(C(1,1)=1.877, S(1)=1.1621 )|%% Similarly, the position and influence of the other 2 clusters for the% input variable |population| are captured by the other two membership% functions |in1cluster2| and |in1cluster3|. %% The rest of the 4 inputs follow the exact pattern mimicking the position% and influence of the 3 clusters along their respective dimensions in the% dataset.%% Now, let's explore how the fuzzy rules are constructed.ruleedit(myfis)%%% *Figure 5:* The graphical rule editor%%% |ruleedit| is the graphical fuzzy rule editor. As you can notice, there% are exactly three rules. Each rule attempts to map a cluster in the input% space to a cluster in the output space.% % The first rule can be explained simply as follows. If the inputs to the% FIS, |population|, |dwelling units|, |num vehicles|, |income|, and% |employment|, strongly belong to their respective |cluster1| membership% functions then the output, |num of trips|, must strongly belong to its% |cluster1| membership function. The (1) at the end of the rule is to% indicate that the rule has  a weight or an importance of "1". Weights can% take any value between 0 and 1. Rules with lesser weights will count for% less in the final output. %% The significance of the rule is that it succinctly maps cluster 1 in% the input space to cluster 1 in the output space. Similarly the other% two rules map cluster 2 and cluster 3 in the input space to cluster 2% and cluster 3 in the output space.%% If a datapoint closer to the first cluster, or in other words% having strong membership to the first cluster, is fed as input to |myfis|% then rule1 will fire with more <#28 firing strength> than the other two% rules. Similarly, an input with strong membership to the second cluster% will fire the second rule will with more firing strength than the other% two rules and so on.%% The output of the rules (firing strengths) are then used to generate the% output of the FIS through the output membership functions.%% The one output of the FIS, |num of trips|, has 3 linear membership% functions representing the 3 clusters identified by |subclust|. The% coefficients of the linear membership functions though are not taken% directly from the cluster centers. Instead, they are estimated from the% dataset using least squares estimation technique. %% All 3 membership functions in this case will be of the form |a*population% + b*dwelling units + c*num vehicles + d*income + e*employment + f|, where% |a|, |b|, |c|, |d|, |e| and |f| represent the coefficients of the linear% membership function. Click on any of the |num of trips| membership% functions in the membership function editor to observe the parameters of% these linear membership functions.%%% Using the FIS for data exploration% You can now use the FIS that has been constructed to understand the% underlying dynamics of relationship being modeled. surfview(myfis)%%% *Figure 6:* Input-Output Surface viewer%%% |surfview| is the surface viewer that helps view the input-output% surface of the fuzzy system. In other words, this tool simulates the% response of the fuzzy system for the entire range of inputs that the% system is configured to work for. Thereafter, the output or the response% of the FIS to the inputs are plotted against the inputs as a surface.% This visualization is very helpful to understand how the system is going% to behave for the entire range of values in the input space.%% In the plot above the surface viewer shows the output surface for two% inputs |population| and |num of dwelling units|. As you can see the% number of auto trips increases with increase in population and dwelling% units, which sounds very rational. You can change the inputs in the X and% Y drop-down boxes to observe the output surface with respect to the inputs% you choose.ruleview(myfis)%%% *Figure 7:* Rule viewer that simulates the entire fuzzy inference process%%% |ruleview| is the graphical simulator for simulating the FIS response for% specific values of the input variables. Now, having built the fuzzy system,% if we want to understand how many trips will occur for a particular% demographic setup, say an area with a particular population, a certain% number of dwelling units and so on, this tool will help you simulate the% FIS response for the input of your choice.%% Another feature of this GUI tool is, it gives you a snapshot of the% entire fuzzy inference process, right from how the membership functions% are being satisfied in every rule to how the final output is being% generated through <#28 defuzzification>. %%% Conclusion% This example has attempted to convey how clustering and fuzzy logic can% be employed as effective techniques for data modeling and analysis. %% Fuzzy logic has also found various% applications in other areas of technology like non-linear control,% automatic control, signal processing, system identification, pattern% recognition, time series prediction, data mining, financial applications% etc.,%% Explore other demos and the documentation for more insight into fuzzy% logic and its applications.%%% Glossary%% *input space* - it is a term used to define the range of all possible% values in the dataset. When using |subclust| the input space refers to% the entire range of values between the maximum and minimum in each% dimension (column) of the dataset.%% *defuzzification* - the process of transforming a fuzzy output of a fuzzy% inference system into a crisp output.%% *firing strength* - The degree to which the antecedent part of a fuzzy% rule is satisfied. Also known as degree of fulfillment.%% *fuzzy inference system (FIS)* - The overall name for a system that uses% fuzzy reasoning to map an input space to an output space%% *Reference:*%% [Chi94] - S. Chiu, "Fuzzy Model Identification Based on Cluster% Estimation," J. of Intelligent & Fuzzy Systems, Vol. 2, No. 3, 1994.displayEndOfDemoMessage(mfilename)##### SOURCE END #####-->   </body></html>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲视频图片小说| 国产成人精品亚洲777人妖| 亚洲一区影音先锋| 亚洲男帅同性gay1069| 国产精品久久久久7777按摩| 国产精品家庭影院| 最新国产の精品合集bt伙计| 136国产福利精品导航| 亚洲美腿欧美偷拍| 午夜精品久久一牛影视| 日韩中文字幕不卡| 蜜臀av亚洲一区中文字幕| 精品无人码麻豆乱码1区2区| 激情小说亚洲一区| 成人免费高清在线| 一本高清dvd不卡在线观看| 欧美伊人久久大香线蕉综合69| 欧美性色欧美a在线播放| 欧美日韩视频专区在线播放| 在线观看91精品国产麻豆| 日韩欧美精品在线视频| 久久久影视传媒| 国产精品久久久久久久久晋中 | 久久精品人人做人人爽人人| 国产午夜精品久久| 亚洲免费观看视频| 天堂成人国产精品一区| 久久av老司机精品网站导航| 国产成人福利片| 日本福利一区二区| 欧美一区二区三区四区五区| 久久久久久久综合狠狠综合| 亚洲免费观看高清在线观看| 青青国产91久久久久久| 国产成人福利片| 欧洲精品在线观看| 2欧美一区二区三区在线观看视频 337p粉嫩大胆噜噜噜噜噜91av | 国产精品视频九色porn| 亚洲另类在线视频| 免费日韩伦理电影| 国产91精品露脸国语对白| 91亚洲永久精品| 欧美精品18+| 国产嫩草影院久久久久| 亚洲精品ww久久久久久p站| 热久久一区二区| 成人av网址在线观看| 欧美日韩视频在线一区二区| 久久久久国产精品人| 亚洲精品久久7777| 国产乱码一区二区三区| 色婷婷国产精品久久包臀| 精品国产乱码久久久久久夜甘婷婷| 国产精品久久免费看| 天涯成人国产亚洲精品一区av| 国产一区二区三区免费播放| 欧洲精品在线观看| 国产亚洲精品bt天堂精选| 亚洲一区二区综合| 国产成人啪午夜精品网站男同| 欧美三级电影网| 国产精品久久久久久户外露出| 麻豆视频观看网址久久| 91女厕偷拍女厕偷拍高清| 欧美xxxx在线观看| 亚洲精品免费播放| 成人午夜视频免费看| 欧美一二三区在线观看| 亚洲精品综合在线| 福利一区二区在线| 日韩免费电影一区| 亚洲va欧美va天堂v国产综合| 北岛玲一区二区三区四区| 欧美成人aa大片| 午夜激情久久久| 91福利社在线观看| 国产精品看片你懂得| 狠狠色丁香久久婷婷综合丁香| 欧美三级电影在线看| 亚洲美女屁股眼交| 成人激情午夜影院| 久久综合99re88久久爱| 日本亚洲视频在线| 欧美日韩视频在线观看一区二区三区 | 欧美日韩激情在线| 亚洲男人的天堂在线观看| 国产91色综合久久免费分享| 欧美成人在线直播| 日韩精品五月天| 在线观看亚洲成人| 综合电影一区二区三区 | 91福利视频久久久久| 成人免费在线视频| a在线播放不卡| 久久久久久97三级| 国产在线麻豆精品观看| 日韩午夜精品视频| 毛片一区二区三区| 日韩欧美一区二区视频| 日韩成人午夜精品| 91精品国模一区二区三区| 视频在线观看一区二区三区| 欧美高清精品3d| 日日夜夜免费精品视频| 欧美日韩在线综合| 日韩精品乱码免费| 日韩精品中文字幕在线一区| 蜜桃av一区二区| 26uuu亚洲| 国产电影一区在线| 国产精品久久毛片av大全日韩| 国产成人av福利| 国产精品久久久久永久免费观看| www.亚洲在线| 亚洲品质自拍视频| 91黄色激情网站| 亚洲国产综合人成综合网站| 欧美日韩久久一区| 日本欧美一区二区在线观看| 日韩久久免费av| 国产成人综合自拍| 亚洲丝袜美腿综合| 欧美日韩黄色影视| 美日韩一区二区| 久久综合丝袜日本网| 不卡在线观看av| 亚洲视频在线一区| 欧美久久高跟鞋激| 国产综合色产在线精品| 中文字幕在线播放不卡一区| 日本高清成人免费播放| 午夜精品久久久久| 久久亚洲免费视频| 91视视频在线观看入口直接观看www | 亚洲网友自拍偷拍| 91精品蜜臀在线一区尤物| 激情欧美一区二区三区在线观看| 欧美国产精品久久| 日本道免费精品一区二区三区| 日韩不卡一区二区三区| 久久久不卡网国产精品一区| 99久久99精品久久久久久| 亚洲电影一区二区三区| 欧美精品一区二区三| 99麻豆久久久国产精品免费| 五月天中文字幕一区二区| 久久综合九色综合97_久久久| jizzjizzjizz欧美| 日韩成人午夜精品| 国产精品日日摸夜夜摸av| 欧美亚洲动漫精品| 国产剧情一区二区三区| 一二三区精品福利视频| 久久午夜电影网| 欧美在线免费视屏| 国产精品香蕉一区二区三区| 亚洲一二三四在线观看| 精品欧美一区二区在线观看| 97se狠狠狠综合亚洲狠狠| 久久精品99国产国产精| 一区精品在线播放| 欧美成人一区二区三区片免费| 99精品视频在线观看| 日本vs亚洲vs韩国一区三区| 国产精品成人免费在线| 亚洲精品一区在线观看| 欧美日韩一区二区三区高清| 国产99久久久国产精品潘金| 日韩在线观看一区二区| 国产精品对白交换视频| 精品久久一区二区三区| 精品1区2区3区| 99精品久久99久久久久| 韩国成人精品a∨在线观看| 亚洲第一久久影院| 亚洲私人影院在线观看| 久久日韩粉嫩一区二区三区| 欧美夫妻性生活| 色婷婷国产精品| av在线不卡免费看| 国产福利91精品一区二区三区| 日韩黄色免费电影| 一区二区三国产精华液| 国产精品欧美久久久久无广告| 日韩一区二区三| 69久久夜色精品国产69蝌蚪网| 色婷婷激情久久| 91在线视频网址| 成人黄色片在线观看| 国产又黄又大久久| 精品在线播放午夜| 久久国产成人午夜av影院| 性感美女极品91精品| 亚洲精品视频在线观看网站| 国产精品久久久久天堂| 国产午夜亚洲精品理论片色戒| 欧美电视剧在线看免费| 日韩一区二区电影在线| 777午夜精品视频在线播放| 欧美日韩国产影片|