亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? gasdemo.html

?? 模糊控制工具箱,很好用的,有相應的說明文件,希望對大家有用!
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">
   <head>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
   
      <!--
This HTML is auto-generated from an M-file.
To make changes, update the M-file and republish this document.
      -->
      <title>Gas Mileage Prediction</title>
      <meta name="generator" content="MATLAB 7.1">
      <meta name="date" content="2005-06-15">
      <meta name="m-file" content="gasdemo">
      <link rel="stylesheet" type="text/css" href="../../../matlab/demos/private/style.css">
   </head>
   <body>
      <div class="header">
         <div class="left"><a href="matlab:edit gasdemo">Open gasdemo.m in the Editor</a></div>
         <div class="right"><a href="matlab:echodemo gasdemo">Run in the Command Window</a></div>
      </div>
      <div class="content">
         <h1>Gas Mileage Prediction</h1>
         <introduction>
            <p>This demo illustrates the prediction of fuel consumption (miles per gallon) for automobiles, using data from previously recorded
               observations.
            </p>
         </introduction>
         <h2>Contents</h2>
         <div>
            <ul>
               <li><a href="#1">Introduction</a></li>
               <li><a href="#2">Partitioning data</a></li>
               <li><a href="#3">Input Selection</a></li>
               <li><a href="#10">Training the ANFIS model</a></li>
               <li><a href="#14">ANFIS vs Linear Regression</a></li>
               <li><a href="#16">Analyzing the ANFIS model</a></li>
               <li><a href="#19">Limitations and Cautions</a></li>
            </ul>
         </div>
         <h2>Introduction<a name="1"></a></h2>
         <p>Automobile MPG (miles per gallon) prediction is a typical nonlinear regression problem, in which several attributes of an
            automobile's profile information are used to predict another continuous attribute, the fuel consumption in MPG. The training
            data is available in the UCI (Univ. of California at Irvine) Machine Learning Repository (<a href="http://www.ics.uci.edu/~mlearn/MLRepository.html)">http://www.ics.uci.edu/~mlearn/MLRepository.html)</a>. It contains data collected from automobiles of various makes and models.
         </p>


<font face="Verdana"> 
<Table border="2" width="50%">

<tr>
<td></td>
<td align=center colspan=6 bgcolor="#99ccff"><b>Input Attributes</b></td>
<td align=center bgcolor="#ffcc99"><b>Output</b></td>
</tr>

<tr>
<td>Car Name</td>
<td align=center bgcolor="#99ccff">Number of Cylinders</td>
<td align=center bgcolor="#99ccff">Displacement</td>
<td align=center bgcolor="#99ccff">Horsepower</td>
<td align=center bgcolor="#99ccff">Weight</td>
<td align=center bgcolor="#99ccff">Acceleration</td>
<td align=center bgcolor="#99ccff">Year</td>
<td align=center bgcolor="#ffcc99">MPG</td>
</tr>

<tr>
<td>Chevrolet Chevelle Malibu</td>
<td align=center bgcolor="#F0F8FF">8</td>
<td align=center bgcolor="#F0F8FF">307</td>
<td align=center bgcolor="#F0F8FF">130</td>
<td align=center bgcolor="#F0F8FF">3504</td>
<td align=center bgcolor="#F0F8FF">12</td>
<td align=center bgcolor="#F0F8FF">70</td>
<td align=center bgcolor="#FAEBD7">18</td>
</tr>

<tr>
<td>Plymouth Duster</td>
<td align=center bgcolor="#F0F8FF">6</td>
<td align=center bgcolor="#F0F8FF">198</td>
<td align=center bgcolor="#F0F8FF">95</td>
<td align=center bgcolor="#F0F8FF">2833</td>
<td align=center bgcolor="#F0F8FF">15.5</td>
<td align=center bgcolor="#F0F8FF">70</td>
<td align=center bgcolor="#FAEBD7">22</td>
</tr>

<tr>
<td>Fiat 128</td>
<td align=center bgcolor="#F0F8FF">4</td>
<td align=center bgcolor="#F0F8FF">90</td>
<td align=center bgcolor="#F0F8FF">75</td>
<td align=center bgcolor="#F0F8FF">2108</td>
<td align=center bgcolor="#F0F8FF">15.5</td>
<td align=center bgcolor="#F0F8FF">74</td>
<td align=center bgcolor="#FAEBD7">24</td>
</tr>

<tr>
<td>Oldsmobile Cutlass Supreme</td>
<td align=center bgcolor="#F0F8FF">8</td>
<td align=center bgcolor="#F0F8FF">260</td>
<td align=center bgcolor="#F0F8FF">110</td>
<td align=center bgcolor="#F0F8FF">4060</td>
<td align=center bgcolor="#F0F8FF">19</td>
<td align=center bgcolor="#F0F8FF">77</td>
<td align=center bgcolor="#FAEBD7">17</td>
</tr>

<tr>
<td>Toyota Tercel</td>
<td align=center bgcolor="#F0F8FF">4</td>
<td align=center bgcolor="#F0F8FF">89</td>
<td align=center bgcolor="#F0F8FF">62</td>
<td align=center bgcolor="#F0F8FF">2050</td>
<td align=center bgcolor="#F0F8FF">17.3</td>
<td align=center bgcolor="#F0F8FF">81</td>
<td align=center bgcolor="#FAEBD7">37.7</td>
</tr>

<tr>
<td>Honda Accord</td>
<td align=center bgcolor="#F0F8FF">4</td>
<td align=center bgcolor="#F0F8FF">107</td>
<td align=center bgcolor="#F0F8FF">75</td>
<td align=center bgcolor="#F0F8FF">2205</td>
<td align=center bgcolor="#F0F8FF">14.5</td>
<td align=center bgcolor="#F0F8FF">82</td>
<td align=center bgcolor="#FAEBD7">36</td>
</tr>

<tr>
<td>Ford  Ranger</td>
<td align=center bgcolor="#F0F8FF">4</td>
<td align=center bgcolor="#F0F8FF">120</td>
<td align=center bgcolor="#F0F8FF">79</td>
<td align=center bgcolor="#F0F8FF">2625</td>
<td align=center bgcolor="#F0F8FF">18.6</td>
<td align=center bgcolor="#F0F8FF">82</td>
<td align=center bgcolor="#FAEBD7">28</td>
</tr>
</Table>




         <p>The table shown above is several observations or samples from the MPG data set. The six input attributes are no. of cylinders,
            displacement, horsepower, weight, acceleration, and model year. The output variable to be predicted is the fuel consumption
            in MPG. (The automobile's manufacturers and models in the first column of the table are not used for prediction).
         </p>
         <h2>Partitioning data<a name="2"></a></h2>
         <p>The data set is obtained from the original data file 'auto-gas.dat'. The dataset is then partitioned into a training set (odd-indexed
            samples) and a checking set (even-indexed samples).
         </p><pre class="codeinput">[data, input_name] = loadgas;
trn_data = data(1:2:end, :);
chk_data = data(2:2:end, :);
</pre><h2>Input Selection<a name="3"></a></h2>
         <p>The function <tt>exhsrch</tt> performs an exhaustive search within the available inputs to select the set of inputs that most influence the fuel consumption.
            The first parameter to the function specifies the number of input  combinations to be tried during the search. Essentially,
            <tt>exhsrch</tt> builds an ANFIS model for each combination and trains it for one epoch and reports the performance achieved. In the following
            example, <tt>exhsrch</tt> is used to determine the one most influential input attribute in predicting the  output.
         </p><pre class="codeinput">exhsrch(1, trn_data, chk_data, input_name);
</pre><pre class="codeoutput">
Train 6 ANFIS models, each with 1 inputs selected from 6 candidates...

ANFIS model 1: Cylinder --&gt; trn=4.6400, chk=4.7255
ANFIS model 2: Disp --&gt; trn=4.3106, chk=4.4316
ANFIS model 3: Power --&gt; trn=4.5399, chk=4.1713
ANFIS model 4: Weight --&gt; trn=4.2577, chk=4.0863
ANFIS model 5: Acceler --&gt; trn=6.9789, chk=6.9317
ANFIS model 6: Year --&gt; trn=6.2255, chk=6.1693
</pre><img vspace="5" hspace="5" src="gasdemo_01.png"> <p><b>Figure 1:</b> Every input variable's influence on fuel consumption
         </p>
         <p>The left-most input variable in Figure 1 has the least error or in other words the most relevance with respect to the output.</p>
         <p>The plot and results from the function clearly indicate that the input attribute 'Weight' is the most influential. The training
            and checking errors are comparable, which implies that there is no overfitting. This means we can push a little further and
            explore if we can select more than one input attribute to build the ANFIS model.
         </p>
         <p>Intuitively, we can simply select 'Weight' and 'Disp' directly since they have the least errors as shown in the plot. However,
            this will not necessarily be the optimal combination of two inputs that result in the minimal training error. To verify this,
            we can use <tt>exhsrch</tt> to search for the optimal combination of 2 input attributes.
         </p><pre class="codeinput">input_index = exhsrch(2, trn_data, chk_data, input_name);
</pre><pre class="codeoutput">
Train 15 ANFIS models, each with 2 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp --&gt; trn=3.9320, chk=4.7920
ANFIS model 2: Cylinder Power --&gt; trn=3.7364, chk=4.8683
ANFIS model 3: Cylinder Weight --&gt; trn=3.8741, chk=4.6764
ANFIS model 4: Cylinder Acceler --&gt; trn=4.3287, chk=5.9625
ANFIS model 5: Cylinder Year --&gt; trn=3.7129, chk=4.5946
ANFIS model 6: Disp Power --&gt; trn=3.8087, chk=3.8594
ANFIS model 7: Disp Weight --&gt; trn=4.0271, chk=4.6349
ANFIS model 8: Disp Acceler --&gt; trn=4.0782, chk=4.4890
ANFIS model 9: Disp Year --&gt; trn=2.9565, chk=3.3905
ANFIS model 10: Power Weight --&gt; trn=3.9310, chk=4.2974
ANFIS model 11: Power Acceler --&gt; trn=4.2740, chk=3.8738
ANFIS model 12: Power Year --&gt; trn=3.3796, chk=3.3505
ANFIS model 13: Weight Acceler --&gt; trn=4.0875, chk=4.0095
ANFIS model 14: Weight Year --&gt; trn=2.7657, chk=2.9954
ANFIS model 15: Acceler Year --&gt; trn=5.6242, chk=5.6481
</pre><img vspace="5" hspace="5" src="gasdemo_02.png"> <p><b>Figure 2:</b> All two input variable combinations and their influence on fuel consumption
         </p>
         <p>The results from <tt>exhsrch</tt> indicate that 'Weight' and 'Year' form the optimal combination of two input attributes. The training and checking errors
            are getting distinguished, indicating the outset of overfitting. It may not be prudent to use more than two inputs for building
            the ANFIS model. We can test this premise to verify it's validity.
         </p><pre class="codeinput">exhsrch(3, trn_data, chk_data, input_name);
</pre><pre class="codeoutput">
Train 20 ANFIS models, each with 3 inputs selected from 6 candidates...

ANFIS model 1: Cylinder Disp Power --&gt; trn=3.4446, chk=11.5329
ANFIS model 2: Cylinder Disp Weight --&gt; trn=3.6686, chk=4.8923
ANFIS model 3: Cylinder Disp Acceler --&gt; trn=3.6610, chk=5.2384
ANFIS model 4: Cylinder Disp Year --&gt; trn=2.5463, chk=4.9001
ANFIS model 5: Cylinder Power Weight --&gt; trn=3.4797, chk=9.3761
ANFIS model 6: Cylinder Power Acceler --&gt; trn=3.5432, chk=4.4804
ANFIS model 7: Cylinder Power Year --&gt; trn=2.6300, chk=3.6300
ANFIS model 8: Cylinder Weight Acceler --&gt; trn=3.5708, chk=4.8376
ANFIS model 9: Cylinder Weight Year --&gt; trn=2.4951, chk=4.0434
ANFIS model 10: Cylinder Acceler Year --&gt; trn=3.2698, chk=6.2616
ANFIS model 11: Disp Power Weight --&gt; trn=3.5879, chk=7.4916
ANFIS model 12: Disp Power Acceler --&gt; trn=3.5395, chk=3.9953
ANFIS model 13: Disp Power Year --&gt; trn=2.4607, chk=3.3563
ANFIS model 14: Disp Weight Acceler --&gt; trn=3.6075, chk=4.2318
ANFIS model 15: Disp Weight Year --&gt; trn=2.5617, chk=3.7860
ANFIS model 16: Disp Acceler Year --&gt; trn=2.4149, chk=3.2480
ANFIS model 17: Power Weight Acceler --&gt; trn=3.7884, chk=4.0479
ANFIS model 18: Power Weight Year --&gt; trn=2.4371, chk=3.2848
ANFIS model 19: Power Acceler Year --&gt; trn=2.7276, chk=3.2580
ANFIS model 20: Weight Acceler Year --&gt; trn=2.3603, chk=2.9152
</pre><img vspace="5" hspace="5" src="gasdemo_03.png"> <p><b>Figure 3:</b> All three input variable combinations and their influence on fuel consumption
         </p>
         <p>The plot demonstrates the result of selecting three inputs, in which 'Weight', 'Year', and 'Acceler' are selected as the best
            combination of three input variables. However, the minimal training (and checking) error do not reduce significantly from
            that of the best 2-input model, which indicates that the newly added attribute 'Acceler' does not improve the prediction much.
            For better generalization, we always prefer a model with a simple structure. Therefore we will stick to the two-input ANFIS
            for further exploration.
         </p>
         <p>We then extract the selected input attributes from the original training and checking datasets.</p><pre class="codeinput">close <span class="string">all</span>;
new_trn_data = trn_data(:, [input_index, size(trn_data,2)]);
new_chk_data = chk_data(:, [input_index, size(chk_data,2)]);
</pre><h2>Training the ANFIS model<a name="10"></a></h2>
         <p>The function <tt>exhsrch</tt> only trains each ANFIS for a single epoch in order to be able to quickly find the right inputs. Now that the inputs are fixed,
            we can spend more time on ANFIS training (100 epochs).
         </p>
         <p>The <tt>genfis1</tt> function generates a initial FIS from the training data, which is then finetuned by ANFIS to generate the final model.
         </p><pre class="codeinput">in_fismat = genfis1(new_trn_data, 2, <span class="string">'gbellmf'</span>);
[trn_out_fismat trn_error step_size chk_out_fismat chk_error] = <span class="keyword">...</span>
    anfis(new_trn_data, in_fismat, [100 nan 0.01 0.5 1.5], [0,0,0,0], new_chk_data, 1);
</pre><p>ANFIS returns the error with respect to training data and checking data in the list of its output parameters. The plot of
            the errors provides useful information about the training process.
         </p><pre class="codeinput">[a, b] = min(chk_error);
plot(1:100, trn_error, <span class="string">'g-'</span>, 1:100, chk_error, <span class="string">'r-'</span>, b, a, <span class="string">'ko'</span>);
title(<span class="string">'Training (green) and checking (red) error curve'</span>);
xlabel(<span class="string">'Epoch numbers'</span>);
ylabel(<span class="string">'RMS errors'</span>);
</pre><img vspace="5" hspace="5" src="gasdemo_04.png"> <p><b>Figure 4:</b> ANFIS training and checking errors
         </p>
         <p>The plot above shows the error curves for 100 epochs of ANFIS training. The green curve gives the training errors and the
            red curve gives the checking errors. The minimal checking error occurs at about epoch 45, which is indicated by a circle.
             Notice that the checking error curve goes up after 50  epochs, indicating that further training overfits the data and produces
            worse generalization
         </p>
         <h2>ANFIS vs Linear Regression<a name="14"></a></h2>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美一级精品久久| 免费在线观看视频一区| 亚洲午夜精品17c| 国模冰冰炮一区二区| 91色九色蝌蚪| 国产三级一区二区三区| 亚洲国产色一区| 99这里只有精品| 久久综合五月天婷婷伊人| 亚洲国产欧美在线人成| caoporen国产精品视频| 日韩一区二区三区av| 一区二区三区四区高清精品免费观看| 国产一区二区伦理片| 欧美一级片在线| 亚洲国产另类av| 色综合视频一区二区三区高清| 久久蜜桃av一区二区天堂| 日韩av成人高清| 欧美在线一区二区三区| 亚洲精品成a人| 成人中文字幕合集| 久久久噜噜噜久噜久久综合| 蜜桃免费网站一区二区三区| 欧美日韩高清影院| 亚洲国产日韩a在线播放| 色婷婷精品久久二区二区蜜臀av| 欧美国产一区在线| 成人三级在线视频| 日本一区二区三区在线观看| 国产精品一区二区久久精品爱涩| 精品国产一区二区三区av性色| 日韩高清不卡在线| 在线播放国产精品二区一二区四区| 一区二区三区四区视频精品免费| 91视频com| 亚洲综合在线免费观看| 色欧美日韩亚洲| 亚洲人成网站在线| 欧美性色黄大片| 香蕉成人伊视频在线观看| 欧美精品亚洲二区| 日韩电影网1区2区| 精品久久人人做人人爱| 国产精品综合二区| 国产精品久久毛片| 色综合久久久网| 亚洲午夜羞羞片| 欧美乱熟臀69xxxxxx| 裸体在线国模精品偷拍| 亚洲精品一区在线观看| 不卡av在线网| 亚洲国产精品久久人人爱| 欧美一区二区播放| 国产成人午夜视频| 亚洲免费av网站| 欧美一二三区精品| 成人不卡免费av| 亚洲国产精品一区二区久久恐怖片| 日韩一区二区免费在线观看| 国产激情91久久精品导航| 亚洲伦理在线精品| 日韩欧美国产一区二区三区| 成人一区二区三区中文字幕| 亚洲国产毛片aaaaa无费看| 日韩精品中文字幕一区二区三区 | www.日韩大片| 亚洲国产成人tv| 欧美精品一区二区三区蜜桃| 94-欧美-setu| 麻豆精品视频在线| 亚洲欧美激情视频在线观看一区二区三区 | 欧美激情一区二区三区在线| 91色在线porny| 老司机精品视频一区二区三区| 国产精品久99| 91精品国产欧美一区二区18| av资源网一区| 六月丁香婷婷色狠狠久久| 亚洲欧美另类在线| www日韩大片| 欧美精品高清视频| 99久久er热在这里只有精品15| 麻豆91免费看| 亚洲国产精品一区二区久久恐怖片| 精品国产第一区二区三区观看体验| 在线视频一区二区三区| 国产福利一区二区三区视频| 亚洲成人动漫av| 亚洲欧美日韩中文播放| 久久久久免费观看| 日韩欧美久久一区| 欧美日韩一区国产| 色视频欧美一区二区三区| 国产成人精品亚洲午夜麻豆| 日韩综合在线视频| 亚洲综合自拍偷拍| 亚洲色图20p| 中文字幕精品—区二区四季| xf在线a精品一区二区视频网站| 欧美日韩三级在线| 色欧美88888久久久久久影院| 成人爽a毛片一区二区免费| 国产一区亚洲一区| 国产在线精品不卡| 极品美女销魂一区二区三区| 日本不卡在线视频| 日韩电影在线一区二区| 亚洲丶国产丶欧美一区二区三区| 亚洲综合色丁香婷婷六月图片| 国产精品久久久久久久第一福利 | 欧美日韩精品系列| 欧美综合色免费| 91九色最新地址| 91黄色免费版| 91国在线观看| 欧美日韩综合在线免费观看| 欧美体内she精高潮| 欧美日韩精品一区二区三区| 欧美日本国产视频| 欧美一区二区视频观看视频| 日韩视频123| 精品国产乱码久久久久久闺蜜 | 在线观看亚洲精品| 欧洲人成人精品| 欧美日韩成人高清| 日韩欧美国产一区二区三区| 精品成人一区二区| 欧美国产一区二区| 亚洲欧美在线观看| 亚洲尤物视频在线| 免费看欧美美女黄的网站| 麻豆国产精品官网| 顶级嫩模精品视频在线看| 99精品桃花视频在线观看| 91精品1区2区| 日韩三级.com| 欧美国产欧美综合| 亚洲一二三四区| 亚洲成av人在线观看| 国内精品写真在线观看| 国产成人在线看| 在线精品视频免费播放| 日韩欧美一二三四区| 国产精品久久夜| 亚洲综合视频在线观看| 美女看a上一区| 成人精品小蝌蚪| 777a∨成人精品桃花网| 久久久九九九九| 亚洲福利国产精品| 国产毛片精品视频| 色欧美片视频在线观看在线视频| 日韩视频一区二区| 亚洲男人天堂一区| 精品一区二区三区不卡| 色婷婷国产精品| 久久久美女艺术照精彩视频福利播放| 亚洲视频在线观看一区| 免费高清在线视频一区·| kk眼镜猥琐国模调教系列一区二区| 在线看国产一区| 久久久噜噜噜久噜久久综合| 亚洲一二三四区不卡| 国产一区二区0| 欧美精品一级二级三级| 亚洲欧洲99久久| 久久电影网电视剧免费观看| 欧美优质美女网站| 国产精品久久精品日日| 国内一区二区在线| 欧美狂野另类xxxxoooo| 亚洲乱码国产乱码精品精小说| 国产毛片精品国产一区二区三区| 欧美欧美午夜aⅴ在线观看| 国产精品久久久久久久久果冻传媒 | 国产美女久久久久| 69精品人人人人| 一区二区三区在线高清| 国产成人亚洲综合a∨婷婷 | 国产制服丝袜一区| 91精品啪在线观看国产60岁| 亚洲精品成人精品456| 成人av在线播放网站| 精品国产在天天线2019| 奇米影视7777精品一区二区| 欧美三级乱人伦电影| 一区二区三区在线免费播放| 成人av电影免费在线播放| 国产亚洲美州欧州综合国| 久久精品噜噜噜成人88aⅴ| 91精品国产一区二区三区蜜臀 | 激情国产一区二区| 91精品国产色综合久久| 亚洲成人动漫在线免费观看| 91搞黄在线观看| 亚洲国产视频a| 精品视频123区在线观看| 亚洲综合久久av| 欧美色国产精品|