?? demo_incremental.m
字號(hào):
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% Incremental ELM learning DEMO
%
% Author: Povilas Daniu餴s, paralax@hacker.lt
% http://ai.hacker.lt - lithuanian site about Artificial Intelligence.
%
% TODO: weighted MSE minimization, maximal likelihood method, multiple
% activation function support.
% ----------------------------------------------------------------------
clear all
alpha = 0.9; % inertia
eta = 0.005; % inital learning rate
epsilon = 0.03; % needed MSE
epsilon1 = 0.001; % minimal descent (stopping criteria) - all iterations in this case
neurones = 1;
n = 10;
numEpochs = 30;
earlyStop = 5;
x = [0:0.01:n];
e = randn(1,100*n + 1)*0.2;
y = sinc(n/2 - x) + e;
for i=1:100*n-6
data.training(i).mat = [y(i+1), y(i+2); y(i+3), y(i+4); y(i+5), y(i+6)]; % matrix
data.vtraining(i,:) = [y(i+1), y(i+2), y(i+3), y(i+4), y(i+5), y(i+6)]; % vector
data.target(i) = y(i+7);
end
data.vtraining = data.vtraining';
e = mNN_device(neurones,size(data.training(1).mat),alpha,eta,epsilon,epsilon1,earlyStop);
%e_elm = ELM_incremental(e,data,0.00001,50);
e_elm = ELM_Rtrain(e,data);
% -----------------------------------------------------------------------
clear data;
x = [0:0.01:n];
er = randn(1,100*n + 1)*0.2;
y = sinc(n/2 - x) + er;
for i=1:100*n-6
data.training(i).mat = [y(i+1), y(i+2); y(i+3), y(i+4); y(i+5), y(i+6)]; % matrix
data.vtraining(i,:) = [y(i+1), y(i+2), y(i+3), y(i+4), y(i+5), y(i+6)]; % vector
data.target(i) = y(i+7);
end
data.vtraining = data.vtraining';
s_elm = mNN_sim(e_elm,data);
figure;
plot(data.target,'r-');
hold on;
plot(s_elm,'b-');
sse4 = sum((data.target - s_elm).^2);
sse4 = sse4 / length(data.target)
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -