?? example2.m
字號(hào):
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%
% Data fitting DEMO of neural networks with matrix inputs.
%
% Author: Povilas Daniu餴s, paralax@hacker.lt
% http://ai.hacker.lt - lithuanian site about Artificial Intelligence.
%
% TODO: weighted MSE minimization, maximal likelihood method, multiple
% activation function support.
% ----------------------------------------------------------------------
clear all
alpha = 0.9; % inertia
eta = 0.005; % inital learning rate
epsilon = 0.03; % needed MSE
epsilon1 = 0.001; % minimal descent (stopping criteria) - all iterations in this case
neurones = 12; % su 20 neveikia :)
n = 3;
numEpochs = 30;
earlyStop = 5;
[a,D] = textread('c:\sunspot1947-1991.txt','%s %f');
%D = load('c:\laser1.txt');
D = (D - mean(D))/std(D);
point = 200;
for i=1:length(D) - 10
if (i <= point)
data.training(i).mat = [ D(i+1), D(i+2) D(i+3); D(i+4), D(i+5), D(i+6); D(i+7), D(i+8), D(i+9); ];
data.target(i) = D(i+10);
else
data1.training(i-point).mat = [ D(i+1), D(i+2) D(i+3); D(i+4), D(i+5), D(i+6); D(i+7), D(i+8), D(i+9); ];
data1.target(i-point) = D(i+10);
end
end
e = mNN_device(neurones,size(data.training(1).mat),alpha,eta,epsilon,epsilon1,earlyStop);
e_elm = ELM_train(e,data);
s_elml = mNN_sim(e_elm,data);
s_elm = mNN_sim(e_elm,data1);
plot(data1.target,'r-'); hold on; plot(s_elm,'b-');
mse_learn = sum((data.target - s_elml).^2) / length(data.target)
mse_test = sum((data1.target - s_elm).^2) / length(data1.target)
%hit_rate = sum(data.target .* s_elm > 0) / length(data.target)
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -