亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fe.html

?? matlab有限元分析工具,比經(jīng)較全面的一個手冊,請大家下載呀
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
            "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>The QMG Finite Element Solver</title>
</head>
<body BGCOLOR="#E0FFE0" TEXT="#000000" LINK = "#0080C0" VLINK = "#004060" ALINK = "#FF0000" >
<center>
<table>
<tr>
<td>
<a href="qmg2_0_home.html"><img src=logo1.jpg alt="QMG logo"></a></td>
<td>
<h1>
The QMG Finite Element Solver
</h1>
</td>
</table>
</center>

The QMG finite element package is intended to be a demonstration of the
use of the mesh generator (as well as sparse-matrix operations in
Matlab) and is by no means 
a full-scale finite element package.  These routines are available only
in Matlab, not in Tcl/Tk.
The finite element package computes approximate
solutions to boundary value problems of the 
following form.
<blockquote>
div (<em>c</em> grad <em>u</em>) = &#8722;<em>f</em> on <em>D</em> <br>
<em>u</em> = <em>g</em> on <em>B</em><sub>1</sub><br>
<em>c&#183;du/dn</em> = <em>h</em> on <em>B</em><sub>2</sub><br>
</blockquote>
This equation is called an isotropic
linear second-order elliptic boundary value
problem with nonconstant coefficients.
The scalar field <em>u</em> is the unknown field.  Scalar field <em>c</em> 
is a function of the domain called the <em>conductivity</em>
and must be positive at every point, and is
given. 
Scalar field <em>f</em> 
is a function of the domain called the <em>source term.</em>
Domain <em>D</em> is a  brep. 
The boundary of domain <em>D</em> is denoted <em>B</em>, 
and <em>B</em> is partitioned
into two subsets <em>B</em><sub>1</sub> and 
<em>B</em><sub>2</sub>.  
On <em>B</em><sub>1</sub> we have Dirichlet data given by
function <em>g</em>, and on 
<em>B</em><sub>2</sub> 
we have Neumann data given by function <em>h</em>.

<p>
This equation arises in many physical problems including
electrostatics, certain kinds of fluid flow, thermodynamics,
chemistry, and astrophysics.
The finite element package currently handles breps of dimension
2 and 3 and handles onlylinear elements.The remainder of this page will assume that the reader is at
least somewhat familiar with boundary value problems and the finite
element method.

<p>
The call to solve the above problem is
<blockquote>
<strong>
<em>u</em> = 
gmfem(<em>brep, scomplex {, conductivity {, source {, userdata}}}</em>);
</strong>
</blockquote>
The simplicial complex must have been constructed from the
brep using the mesh generator.  The conductivity and source arguments
are optional; see below.  Boundary conditions are not
arguments to <code>gmfem</code>; they are specified
using property/value pairs associated with the facets of the domain.

<p>
The brep and simplicial complex must both be full-dimensional, i.e.,
they must have their embedded dimensional equal to their intrinsic
dimension.

<p>
The return value <em>u</em> is a <a href="geom.html#zba">zba</a>, in other
words, subscripting starts at 0.  This is because node numbering
also starts at 0.
<p>
Boundary conditions, conductivity and source terms
are all associated with the brep rather than the mesh (unlike some other
finite element software packages).
This approach has
the advantage that the user can change the  boundary conditions, source
terms, and so on after the mesh has been generated.  The disadvantage
is that the finite element solver needs to have access to the brep
as well as the mesh to look up this data.

<p>
The return value represents the solution field <em>u</em> to the
BVP.  The elements of this vector are in correspondence with the nodes
of the mesh: each of vector <em>u</em> is the
the computed value of the solution
field at the corresponding node.
(For Dirichlet boundary nodes, the value of <em>u</em> is copied
directly from the Dirichlet boundary data.)  

<p>
For 2D problems, the solution  may be plotted with
<code><a href="ref.html#gmplot">gmplot</a></code>.  For 3D
problems, the boundary values of the solution may be plotted
on the boundary of the domain with the same function.  In this
case the solution <em>u</em> must first be restricted to the boundary
using the <a href="ref.html#gmboundary"><code>gmboundary</code></a> function.

<h2> Specifying the conductivity &amp; source terms</h2>
The conductivity is specified either as a value associated with a region
(under property name <strong>conductivity</strong>),
by the third argument to <code>gmfem</code>, or by the
default conductivity function which is 1 everywhere (Poisson's equation).
The order of precedence is as given in the previous sentence (i.e.,
the property-value pair gets highest precedence, etc.)
The user specifies conductivity as a string.  This string is passed
to <code>gm_conductivity</code> by <code>gmfem</code>.  
See the <a href="userfunc.html">page</a> on user-defined
functions for details on defining conductivity
functions.

<p>
The source term is specified either as a value associated with a region
(under the property name <strong>source</strong>)
by the fourth argument to <code>gmfem</code>, or by the
default source-term function which is 0 everywhere (Laplace's equation).
The order of precedence is as given in the previous sentence (i.e.,
the property-value pair gets highest precedence, etc.)
The user-specified source is a string.  This string is passed
to <code>gm_source</code> by <code>gmfem</code>.  
See the
<a href="userfunc.html">page</a> on user-specified functions.

<p>
A <strong>conductivity</strong> or <strong>source</strong>property attached to a face of lower dimension than the top-level is ignored.
<h2>Boundary conditions</h2>
Boundary conditions are specified on facets, that is, faces of
the brep of dimension <em>d</em>&#8722;1 (assuming the dimension of the brep is d).
They are specified by a property-value pair associated with the
face.  The property name is <strong>bc</strong>.  The value is an ordered pair
of the form (<em>type func</em>) where <em>type</em>
is either <strong>d</strong>
for Dirichlet or <strong>n</strong> for Neumann, and <em>func</em>
is a string defining the function.  
See the <a href="userfunc.html">page</a> on
user-defined functions.


<p>
Dirichlet boundary data means
<em>u</em> is specified, whereas Neumann data means 
<em>c&#183;du/dn</em> is specified.
Thus, the same
type of boundary condition must be applied to an entire facet, i.e.,
it is not possible to have a Dirichlet boundary condition on
half a facet and a Neumann condition on the other half.  The desiredeffect can be obtained by splitting the brep facet into two subfacets.

<p>
Note that boundary conditions are specified only on facets.  Boundary
conditions for faces of lower dimension (e.g. an edge of a 3D brep)
are inferred by <code>gmfem</code> from the facets that contain them.
In particular, a mesh vertex on a low-dimensional face will take on the Dirichlet boundary condition equal to theaverage of the value computed from those facets, assuming at leastone facet is Dirichlet.
<p>
When every facet adjacent to a low-dimensional face has Neumann data,
the nodes on that face will also take on Neumann conditions.
Since Neumann data is integrated, such a vertex will combine all the
Neumann integrations from the facets that contain it and so 
local consistency is not needed.

<p>
The default boundary condition for faces with no specified<strong>bc</strong> property is
Neumann condition of 0 (i.e., the face is &#8220;insulated&#8221;).

<p>
If all the facets of the domain have Neumann conditions, then
the <code>gmfem</code> routine will change one node of the mesh (chosen
arbitrarily) to a Dirichlet condition of <em>u</em>=0  to make the problem
well-posed.  It will also verify that the overall integral of
the Neumann boundary conditions are zero.  The routine will solve the problem anyway even if the integral is nonzero,but in this case it may issue a warning.
<p>
For a disconnected domain, gmfem  carries out the transformation
described in the previous paragraph on each connected component
of the domain individually. 

<p> 
In order to figure out which facet is which (for assigning
boundary conditions),
it may be helpful to color the faces with <a href="ref.html#gmrndcolor">
<code>gmrndcolor</code></a> and display the brep with 
<a href="ref.html#gmviz"><code>gmviz</code></a>. 
The mapping of facet indices to colors can be displayed with 
<a href="ref.html#gmshowcolor"><code>gmshowcolor</code></a>.

<h2> <a name = "internal_boundaries"> Boundary conditions on internal 
boundaries </a></h2>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美激情一区二区三区蜜桃视频| 亚洲精品第1页| 国产精品国产精品国产专区不蜜 | 国产福利精品一区二区| 91丨porny丨户外露出| 日韩欧美的一区二区| 国产精品免费视频观看| 久久99国产精品久久99| 欧美日韩视频不卡| 亚洲日本护士毛茸茸| 美女性感视频久久| 欧美色爱综合网| 中文字幕视频一区| 国产成人自拍在线| 精品国产一区二区三区久久久蜜月| 一区二区三区在线视频免费观看| 国产成人综合精品三级| 精品免费一区二区三区| 亚洲mv大片欧洲mv大片精品| 99久久精品国产导航| 亚洲成人动漫在线观看| 91浏览器在线视频| 国产欧美视频在线观看| 国产在线国偷精品免费看| 制服.丝袜.亚洲.另类.中文| 香蕉久久夜色精品国产使用方法| 91小视频免费观看| 国产精品免费视频网站| 岛国精品一区二区| 国产精品乱码久久久久久| 国产成人在线视频免费播放| 久久影院电视剧免费观看| 久久精品国产精品亚洲红杏| 欧美大片在线观看一区二区| 奇米色一区二区| 日韩欧美在线网站| 久久精品国产999大香线蕉| 欧美一区二区三区精品| 日本午夜一本久久久综合| 欧美一区二区三级| 久久er99精品| 久久亚洲捆绑美女| 国产精品91xxx| 国产精品国产三级国产普通话三级| 成年人午夜久久久| 樱花草国产18久久久久| 欧美日韩国产小视频在线观看| 亚洲不卡一区二区三区| 日韩一区二区在线免费观看| 久久国产欧美日韩精品| 久久久国产午夜精品 | 国产精品欧美久久久久无广告| 成人爽a毛片一区二区免费| 国产精品成人一区二区三区夜夜夜 | jvid福利写真一区二区三区| 自拍偷拍亚洲欧美日韩| 欧美日韩久久久一区| 久久超碰97中文字幕| 久久先锋影音av鲁色资源网| www.av精品| 图片区日韩欧美亚洲| 日韩亚洲欧美在线| 国产福利精品一区| 国产福利一区二区三区视频在线| 国产精品色婷婷久久58| 欧美三级三级三级爽爽爽| 久久99久久精品| 亚洲色图视频网| 欧美xxxxxxxxx| 91视频一区二区三区| 蜜臀a∨国产成人精品| 中文字幕国产一区二区| 制服丝袜亚洲网站| 北岛玲一区二区三区四区| 日韩成人精品在线| 国产精品国产三级国产普通话99| 91精品国产欧美一区二区| 国产高清精品久久久久| 午夜伦欧美伦电影理论片| 久久久久成人黄色影片| 欧美日高清视频| 成人午夜免费电影| 免费成人av在线| 亚洲综合一区二区| 国产精品午夜久久| 欧美xxxxxxxxx| 欧美高清视频一二三区| aaa亚洲精品| 国产一区二区三区电影在线观看| 亚洲一区二区中文在线| 日本一区二区三区四区在线视频 | 欧美亚洲免费在线一区| 国产精品1区二区.| 日韩精品午夜视频| av成人免费在线观看| 久久精品理论片| 婷婷久久综合九色综合伊人色| 国产精品日日摸夜夜摸av| 2023国产精品| 欧美大片一区二区| 正在播放亚洲一区| 欧美日韩精品一区视频| 一本一道综合狠狠老| 99久久精品免费看| av成人免费在线| www.一区二区| 成人app下载| 懂色av一区二区三区免费看| 国产裸体歌舞团一区二区| 精彩视频一区二区| 日韩av网站在线观看| 日本欧美一区二区在线观看| 亚洲成人免费视| 午夜欧美一区二区三区在线播放| 亚洲综合在线观看视频| 亚洲精品成人在线| 亚洲自拍偷拍综合| 亚洲网友自拍偷拍| 偷偷要91色婷婷| 开心九九激情九九欧美日韩精美视频电影 | 中文字幕一区日韩精品欧美| 国产女人水真多18毛片18精品视频| 久久综合色一综合色88| 久久久午夜精品理论片中文字幕| 精品国内片67194| 精品不卡在线视频| 亚洲国产精品精华液ab| 国产精品丝袜91| 亚洲乱码日产精品bd| 亚洲你懂的在线视频| 亚洲国产日韩一级| 蜜臀av性久久久久蜜臀aⅴ | 日产欧产美韩系列久久99| 午夜久久久久久电影| 久久国产剧场电影| 成人综合在线网站| 色悠悠亚洲一区二区| 欧美日韩一区二区三区免费看| 91麻豆精品国产| 国产亚洲精品资源在线26u| 亚洲欧洲成人精品av97| 洋洋成人永久网站入口| 免费亚洲电影在线| 成人黄色小视频| 欧美日韩视频专区在线播放| 精品国产伦一区二区三区免费| 欧美韩日一区二区三区四区| 亚洲伊人色欲综合网| 欧美日韩精品一区二区| 久久久久亚洲综合| 亚洲色图20p| 另类小说色综合网站| av电影在线观看一区| 欧美区视频在线观看| 国产欧美一区二区精品久导航| 亚洲成人黄色小说| 成人午夜短视频| 在线播放中文一区| 国产精品视频麻豆| 久久精品国产一区二区| 91啪亚洲精品| 欧美大度的电影原声| 亚洲欧美日韩中文播放| 精品一区二区三区久久久| 91蜜桃在线免费视频| 久久婷婷成人综合色| 亚欧色一区w666天堂| 丁香五精品蜜臀久久久久99网站| 91精品国产91久久久久久一区二区| 国产女主播视频一区二区| 日韩精品高清不卡| 99re在线精品| 久久久国产精华| 蜜臀av在线播放一区二区三区| 日本精品视频一区二区三区| 国产亚洲综合在线| 麻豆一区二区三| 欧美亚洲国产怡红院影院| 中文字幕乱码亚洲精品一区| 久久不见久久见免费视频7| 在线国产亚洲欧美| 亚洲精品久久嫩草网站秘色| 国产黑丝在线一区二区三区| 欧美不卡一二三| 日本中文在线一区| 欧美日产在线观看| 亚洲国产精品影院| 日本精品裸体写真集在线观看 | 日韩欧美一二三四区| 午夜精品福利一区二区三区av| 97精品久久久久中文字幕| 精品av久久707| 极品少妇xxxx精品少妇偷拍| 亚洲成va人在线观看| 在线国产电影不卡| 亚洲电影一区二区| 91成人免费在线| 亚洲bdsm女犯bdsm网站| 精品视频999| 天堂久久久久va久久久久|