亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? fe.html

?? matlab有限元分析工具,比經較全面的一個手冊,請大家下載呀
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
            "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>The QMG Finite Element Solver</title>
</head>
<body BGCOLOR="#E0FFE0" TEXT="#000000" LINK = "#0080C0" VLINK = "#004060" ALINK = "#FF0000" >
<center>
<table>
<tr>
<td>
<a href="qmg2_0_home.html"><img src=logo1.jpg alt="QMG logo"></a></td>
<td>
<h1>
The QMG Finite Element Solver
</h1>
</td>
</table>
</center>

The QMG finite element package is intended to be a demonstration of the
use of the mesh generator (as well as sparse-matrix operations in
Matlab) and is by no means 
a full-scale finite element package.  These routines are available only
in Matlab, not in Tcl/Tk.
The finite element package computes approximate
solutions to boundary value problems of the 
following form.
<blockquote>
div (<em>c</em> grad <em>u</em>) = &#8722;<em>f</em> on <em>D</em> <br>
<em>u</em> = <em>g</em> on <em>B</em><sub>1</sub><br>
<em>c&#183;du/dn</em> = <em>h</em> on <em>B</em><sub>2</sub><br>
</blockquote>
This equation is called an isotropic
linear second-order elliptic boundary value
problem with nonconstant coefficients.
The scalar field <em>u</em> is the unknown field.  Scalar field <em>c</em> 
is a function of the domain called the <em>conductivity</em>
and must be positive at every point, and is
given. 
Scalar field <em>f</em> 
is a function of the domain called the <em>source term.</em>
Domain <em>D</em> is a  brep. 
The boundary of domain <em>D</em> is denoted <em>B</em>, 
and <em>B</em> is partitioned
into two subsets <em>B</em><sub>1</sub> and 
<em>B</em><sub>2</sub>.  
On <em>B</em><sub>1</sub> we have Dirichlet data given by
function <em>g</em>, and on 
<em>B</em><sub>2</sub> 
we have Neumann data given by function <em>h</em>.

<p>
This equation arises in many physical problems including
electrostatics, certain kinds of fluid flow, thermodynamics,
chemistry, and astrophysics.
The finite element package currently handles breps of dimension
2 and 3 and handles onlylinear elements.The remainder of this page will assume that the reader is at
least somewhat familiar with boundary value problems and the finite
element method.

<p>
The call to solve the above problem is
<blockquote>
<strong>
<em>u</em> = 
gmfem(<em>brep, scomplex {, conductivity {, source {, userdata}}}</em>);
</strong>
</blockquote>
The simplicial complex must have been constructed from the
brep using the mesh generator.  The conductivity and source arguments
are optional; see below.  Boundary conditions are not
arguments to <code>gmfem</code>; they are specified
using property/value pairs associated with the facets of the domain.

<p>
The brep and simplicial complex must both be full-dimensional, i.e.,
they must have their embedded dimensional equal to their intrinsic
dimension.

<p>
The return value <em>u</em> is a <a href="geom.html#zba">zba</a>, in other
words, subscripting starts at 0.  This is because node numbering
also starts at 0.
<p>
Boundary conditions, conductivity and source terms
are all associated with the brep rather than the mesh (unlike some other
finite element software packages).
This approach has
the advantage that the user can change the  boundary conditions, source
terms, and so on after the mesh has been generated.  The disadvantage
is that the finite element solver needs to have access to the brep
as well as the mesh to look up this data.

<p>
The return value represents the solution field <em>u</em> to the
BVP.  The elements of this vector are in correspondence with the nodes
of the mesh: each of vector <em>u</em> is the
the computed value of the solution
field at the corresponding node.
(For Dirichlet boundary nodes, the value of <em>u</em> is copied
directly from the Dirichlet boundary data.)  

<p>
For 2D problems, the solution  may be plotted with
<code><a href="ref.html#gmplot">gmplot</a></code>.  For 3D
problems, the boundary values of the solution may be plotted
on the boundary of the domain with the same function.  In this
case the solution <em>u</em> must first be restricted to the boundary
using the <a href="ref.html#gmboundary"><code>gmboundary</code></a> function.

<h2> Specifying the conductivity &amp; source terms</h2>
The conductivity is specified either as a value associated with a region
(under property name <strong>conductivity</strong>),
by the third argument to <code>gmfem</code>, or by the
default conductivity function which is 1 everywhere (Poisson's equation).
The order of precedence is as given in the previous sentence (i.e.,
the property-value pair gets highest precedence, etc.)
The user specifies conductivity as a string.  This string is passed
to <code>gm_conductivity</code> by <code>gmfem</code>.  
See the <a href="userfunc.html">page</a> on user-defined
functions for details on defining conductivity
functions.

<p>
The source term is specified either as a value associated with a region
(under the property name <strong>source</strong>)
by the fourth argument to <code>gmfem</code>, or by the
default source-term function which is 0 everywhere (Laplace's equation).
The order of precedence is as given in the previous sentence (i.e.,
the property-value pair gets highest precedence, etc.)
The user-specified source is a string.  This string is passed
to <code>gm_source</code> by <code>gmfem</code>.  
See the
<a href="userfunc.html">page</a> on user-specified functions.

<p>
A <strong>conductivity</strong> or <strong>source</strong>property attached to a face of lower dimension than the top-level is ignored.
<h2>Boundary conditions</h2>
Boundary conditions are specified on facets, that is, faces of
the brep of dimension <em>d</em>&#8722;1 (assuming the dimension of the brep is d).
They are specified by a property-value pair associated with the
face.  The property name is <strong>bc</strong>.  The value is an ordered pair
of the form (<em>type func</em>) where <em>type</em>
is either <strong>d</strong>
for Dirichlet or <strong>n</strong> for Neumann, and <em>func</em>
is a string defining the function.  
See the <a href="userfunc.html">page</a> on
user-defined functions.


<p>
Dirichlet boundary data means
<em>u</em> is specified, whereas Neumann data means 
<em>c&#183;du/dn</em> is specified.
Thus, the same
type of boundary condition must be applied to an entire facet, i.e.,
it is not possible to have a Dirichlet boundary condition on
half a facet and a Neumann condition on the other half.  The desiredeffect can be obtained by splitting the brep facet into two subfacets.

<p>
Note that boundary conditions are specified only on facets.  Boundary
conditions for faces of lower dimension (e.g. an edge of a 3D brep)
are inferred by <code>gmfem</code> from the facets that contain them.
In particular, a mesh vertex on a low-dimensional face will take on the Dirichlet boundary condition equal to theaverage of the value computed from those facets, assuming at leastone facet is Dirichlet.
<p>
When every facet adjacent to a low-dimensional face has Neumann data,
the nodes on that face will also take on Neumann conditions.
Since Neumann data is integrated, such a vertex will combine all the
Neumann integrations from the facets that contain it and so 
local consistency is not needed.

<p>
The default boundary condition for faces with no specified<strong>bc</strong> property is
Neumann condition of 0 (i.e., the face is &#8220;insulated&#8221;).

<p>
If all the facets of the domain have Neumann conditions, then
the <code>gmfem</code> routine will change one node of the mesh (chosen
arbitrarily) to a Dirichlet condition of <em>u</em>=0  to make the problem
well-posed.  It will also verify that the overall integral of
the Neumann boundary conditions are zero.  The routine will solve the problem anyway even if the integral is nonzero,but in this case it may issue a warning.
<p>
For a disconnected domain, gmfem  carries out the transformation
described in the previous paragraph on each connected component
of the domain individually. 

<p> 
In order to figure out which facet is which (for assigning
boundary conditions),
it may be helpful to color the faces with <a href="ref.html#gmrndcolor">
<code>gmrndcolor</code></a> and display the brep with 
<a href="ref.html#gmviz"><code>gmviz</code></a>. 
The mapping of facet indices to colors can be displayed with 
<a href="ref.html#gmshowcolor"><code>gmshowcolor</code></a>.

<h2> <a name = "internal_boundaries"> Boundary conditions on internal 
boundaries </a></h2>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
555www色欧美视频| 蜜桃视频在线观看一区| 丰满少妇在线播放bd日韩电影| 欧美日韩激情在线| 亚洲成人免费影院| 欧美日韩高清不卡| 精品一区二区三区蜜桃| 国产欧美视频在线观看| av亚洲精华国产精华精| 亚洲制服欧美中文字幕中文字幕| 欧美三级视频在线观看| 日韩国产欧美在线播放| 久久久久一区二区三区四区| 成人av免费网站| 国产一区二区三区久久久| 欧美日韩激情一区| 欧美国产一区二区| 亚洲视频一区二区在线| 亚洲成人黄色影院| 天堂在线亚洲视频| 国产精品自产自拍| 国产精品久久久久久亚洲毛片| 欧美成人在线直播| 亚洲欧美偷拍另类a∨色屁股| 青青草91视频| 欧美日韩精品一区二区三区| 看电视剧不卡顿的网站| 久久奇米777| 欧美性做爰猛烈叫床潮| 九九精品视频在线看| 国产精品热久久久久夜色精品三区| 91视频.com| 久久国产免费看| 亚洲欧洲精品一区二区三区| 欧美日产在线观看| 丰满少妇在线播放bd日韩电影| www.久久久久久久久| 亚洲成人资源在线| 亚洲国产精品精华液2区45| 在线精品观看国产| 国产成人在线观看免费网站| 亚洲伊人色欲综合网| 久久久av毛片精品| 欧美精品日韩一本| 成人黄色在线网站| 久久成人综合网| 亚洲777理论| 国产精品每日更新| www国产亚洲精品久久麻豆| 色噜噜狠狠成人网p站| 久久电影网站中文字幕| 亚洲成年人影院| 亚洲欧美综合网| 国产午夜精品久久久久久久| 91精品免费在线| 色狠狠综合天天综合综合| 国产一区二区三区| 蜜臀av一区二区在线免费观看| 亚洲情趣在线观看| 欧美高清在线精品一区| 日韩免费观看2025年上映的电影| 91免费视频网| 成人a免费在线看| 国产综合久久久久久鬼色 | 精品国产区一区| 欧美三级日韩三级| 91福利资源站| 94-欧美-setu| 91免费版pro下载短视频| 国产大片一区二区| 欧美日韩国产高清一区二区 | 亚洲国产成人av| 亚洲欧洲综合另类| 最新中文字幕一区二区三区 | 亚洲国产另类精品专区| 国产精品成人午夜| 亚洲欧美中日韩| 最新国产精品久久精品| 国产午夜精品在线观看| 国产亚洲欧美在线| 国产亚洲欧美在线| 欧美韩国一区二区| 国产精品狼人久久影院观看方式| 久久久久久久久久久久久久久99 | 欧美美女黄视频| 678五月天丁香亚洲综合网| 欧美视频在线一区| 3751色影院一区二区三区| 欧美日韩综合色| 91精品国产色综合久久不卡蜜臀| 51精品久久久久久久蜜臀| 欧美一卡2卡3卡4卡| 日韩免费福利电影在线观看| 免费成人在线影院| 美女被吸乳得到大胸91| 精品一区二区三区不卡| 国产一区二区调教| 成人美女视频在线看| 97久久精品人人做人人爽| 色呦呦一区二区三区| 欧美亚洲综合另类| 日韩欧美一区中文| 国产欧美日韩久久| 一区二区三区在线视频观看58| 亚洲h精品动漫在线观看| 日韩av电影一区| 国产成a人亚洲精| 色中色一区二区| 精品乱人伦小说| 国产精品免费看片| 天堂资源在线中文精品| 激情亚洲综合在线| 色综合色狠狠综合色| 欧美日本不卡视频| 欧美激情一区二区三区蜜桃视频 | 亚洲欧美区自拍先锋| 亚洲国产成人91porn| 国产精品一区专区| 色悠久久久久综合欧美99| 精品久久久久久亚洲综合网 | 欧美日韩亚州综合| 久久久99精品久久| 一级日本不卡的影视| 国产一区亚洲一区| 欧美亚一区二区| 久久欧美一区二区| 亚洲第一二三四区| 成人国产精品视频| 欧美一区二区三区啪啪| 亚洲欧洲www| 精品无人区卡一卡二卡三乱码免费卡| 成人app下载| 欧美成人在线直播| 亚洲成人av一区| 99视频精品在线| 久久久久久久久久久久电影| 亚洲综合在线观看视频| 国产福利一区在线观看| 777a∨成人精品桃花网| 亚洲靠逼com| 成人美女在线视频| 久久日韩精品一区二区五区| 亚洲在线视频网站| 成人白浆超碰人人人人| 欧美v亚洲v综合ⅴ国产v| 亚洲第一成人在线| av在线不卡网| 中文字幕 久热精品 视频在线| 日韩不卡免费视频| 欧美三区在线观看| 中文字幕中文字幕一区| 国内偷窥港台综合视频在线播放| 欧美日韩国产一区| 亚洲一区二区三区四区五区黄| 国产成人精品免费在线| 精品第一国产综合精品aⅴ| 亚洲成人av在线电影| 在线观看日韩一区| 亚洲久本草在线中文字幕| 国产999精品久久| 久久久99免费| 成人丝袜高跟foot| 亚洲国产成人午夜在线一区| 国产一区二区三区四区五区入口| 日韩欧美国产一区在线观看| 五月天视频一区| 欧美日韩精品一区二区三区四区| 亚洲午夜成aⅴ人片| 欧洲色大大久久| 亚洲国产综合91精品麻豆| 99热精品一区二区| 亚洲日本在线看| 色综合久久久网| 亚洲午夜电影在线| 欧美日本免费一区二区三区| 日韩电影一区二区三区四区| 在线电影院国产精品| 蜜臀av在线播放一区二区三区| 日韩视频一区二区三区| 蜜臀av性久久久久蜜臀aⅴ四虎 | 精品一区二区国语对白| 欧美mv日韩mv国产网站app| 精品在线一区二区三区| 国产亚洲精品资源在线26u| 国产91精品入口| 国产精品免费aⅴ片在线观看| 国产成人免费在线| 亚洲色图欧洲色图婷婷| 在线中文字幕一区二区| 手机精品视频在线观看| 91精品国产综合久久精品图片 | 成人h动漫精品| 亚洲一区中文在线| 欧美一级黄色大片| 国产二区国产一区在线观看| 亚洲图片激情小说| 欧美日韩精品一区二区三区蜜桃 | 国产午夜精品久久久久久久| 91女神在线视频| 蜜臀国产一区二区三区在线播放|