亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? geom.html

?? matlab有限元分析工具,比經較全面的一個手冊,請大家下載呀
?? HTML
?? 第 1 頁 / 共 3 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"            "http://www.w3.org/TR/REC-html40/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><title>Geometric Objects in QMG</title></head><body BGCOLOR="#E0FFE0" TEXT="#000000" LINK = "#0080C0" VLINK = "#004060" ALINK = "#FF0000" ><center><table><tr><td><a href="qmg2_0_home.html"><img src=logo1.jpg alt="QMG logo"></a></td><td><h1>Geometric Objects in QMG</h1></td></table></center>The QMG package supports two datatypes: <em><a href="#breps">breps</a></em> and <em><a href="#meshes">simplicialcomplexes</a></em>.  Simplicialcomplexes are also called &#8220;meshes.&#8221;<p>Before plunging into the details of geometric representation,consider using some of the simpler ways to create breps.For a simple way to create two-dimensional breps, consider the<code><a href="ref.html#gm_cpoly">gm_cpoly</a></code>routine.  For a simple way to create three-dimensional polyhedralbreps,consider using <a href="ref.html#gmoffread">OFF format</a>.<h2><a name="breps">Overview of breps</a></h2>A <em>brep</em> is a geometric object that is specified by itsboundary faces (&#8220;brep&#8221; is short for &#8220;boundary representation&#8221;).  Manypeople pronounce brep like &#8220;bee-rep&#8221;.  Breps have different internalrepresentations in Matlab versus Tcl/Tk, but the two representationhave essentially the same data.Below we describe thedetails of the internal representations, but first we describedata present in a brep.<p>The next few paragraphs cover three-dimensionalbreps whose intrinsic dimension is also three.  Belowwe turn to lower-dimensional breps.<p>A brep is composed of <em>topological entities</em> which arealso sometimes called <em>faces</em> for short. A brep hasfour types of faces: <em>chambers</em>, <em>surfaces</em>,<em>edges</em> and <em>vertices</em>.  These faces have dimensions 3, 2, 1, 0 respectively.  The boundary of each face is definedby a list of faces of one lower dimension.  In other words, theboundary of a chamber is one or more surfaces, the boundary ofa surface is zero or more edges, and the boundary of an edgeis zero or more vertices.<p>The topological hierarchy for a QMG 2.0 object must have the followingproperty: if two faces have a common point, then their intersectionmust be a common topological subentity.  For example, a cube is boundedby six squares.  Two adjacent squares must have a common topologicaledge.<p>Breps in QMG 2.0 must be finite and must be watertight.  <em>Watertight</em>has the following meaning in 3D:for each chamber <em>C</em>, whenall the edges that occur as boundaries of surfaces that occuras boundaries of <em>C</em> are enumerated, each edge must occur an even numberof times (counting multiplicity).Similarly, for each surface <em>S</em>, when all the vertices that occuras boundaries of edges that occur as boundaries of <em>S</em> are enumerated,each vertex must occur an even number of times in this enumeration.For example, this rule means that for the cube mentionedin the last paragraph, it is not permissible for two surfaces that sharea common edge to own separate copies of that edge under two differentnames.<p>Each topological entity, except for a chamber,is composed of geometric entities.  In particular, a surface is composedof <em>Bezier patches</em>, an edge is composed of <em>Bezier curves</em>,and a vertex has a <em>point</em> associated with it.<p>Bezier patches of two types are supported: triangular patchesand tensor product patches.  See G.&nbsp;Farin, <em>Curves and Surfacesfor Geometric Design</em> for the definition of the two kinds ofBezier patches.  Here arethe rules governing Bezier patches and curves.<ul><li>The parametric domain for a triangular patch is the {(<em>u</em>,<em>v</em>):<em>u</em>+<em>v</em>&#8804;1; <em>u</em>&#8805;0; <em>v</em>&#8805;0}.  The parametric domain for a quadrilateral patch is {(<em>u</em>,<em>v</em>): 0&#8804;<em>u</em>,<em>v</em>&#8804;1}.The parametric domain for a curve is [0,1].<li>The control points for a curve are numbered so that <em>p</em>(0) is the first-listed (indexed 0) control point and <em>p</em>(1) is thelast-listed (indexed <em>d</em>), where <em>p</em> is the degree-<em>d</em> parametric function.<li>The control points for a triangularpatch are ordered according to the following example for a degree-3 patch:<p><center><table><tr><td><strong><em>u</em>=0,<em>v</em>=1</strong></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>0</td><td></td><td></td><td></td></tr><tr><td></td><td>1</td><td>2</td><td></td><td></td></tr><tr><td></td><td>3</td><td>4</td><td>5</td><td></td></tr><tr><td></td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td><strong><em>u</em>=0,<em>v</em>=0</strong></td><td></td><td></td><td></td><td></td><td><strong><em>u</em>=1,<em>v</em>=0</strong></td></tr></table></center><li>Control points for a quadrilateral patch are numbered according tothe following degree-(3,2) example:<p><center><table><tr><td><strong><em>u</em>=0,<em>v</em>=1</strong></td><td></td><td></td><td></td><td></td><td><strong><em>u</em>=1,<em>v</em>=1</strong></td></tr><tr><td></td><td>8</td><td>9</td><td>10</td><td>11</td><td></td></tr><tr><td></td><td>4</td><td>5</td><td>6</td><td>7</td><td></td></tr><tr><td></td><td>0</td><td>1</td><td>2</td><td>3</td><td></td></tr><tr><td><strong><em>u</em>=0,<em>v</em>=0</strong></td><td></td><td></td><td></td><td></td><td><strong><em>u</em>=1,<em>v</em>=0</strong></td></tr></table></center><li>Patches and curves must be nondegenerate, meaning that the parametric function must be injective on its domain, and thatthe derivative must be full-rank at every point of thedomain.  (Note that certain domains, such as cones, havepoints on curved surfaces where the derivativebecomes low-rank.  Such domains cannot be representedwith order higher than first in QMG 2.0.)<li>If two distinct patches have a common point, then the common point musteither be a vertex, or else the two patches must have a commonbounding curve.<li>Two patches are assumed to be adjacent along an edge if the twoextreme control points of the common edge are in common.  Thus,adjacency between patches is determined with a purely combinatorial test.Patches of different degrees can be adjacent.  (See <code>test9</code> for an example of a degree-1 patch againsta degree-3 patch.)Nonetheless,there cannot be any gap between the patches, meaning that theparametric function of thehigher-degree neighbor must degenerate to a lower degree along the common edge.This requirement also means that two distinctBezier curves cannot have both endpoints in common with eachother.<li>The dihedral angle between two adjacent patches may not be zeroat any point along their common edge.</ul><p>Rules concerning the relationship between topological entitiesand geometric entities are as follows:<ul><li>The topological boundary of a face <em>F</em> must be made up ofentities that are exactly the boundary of the geometric entities making up <em>F</em>.  For example, a surfaceis shaped like a square with a small hole or slit in themiddle cannot have a single quadrilateralpatch as its only geometric entity.<li>Faces must be orientable, i.e., there must be a globally consistent wayto orient the patches of a face.  In particular, a face shapedlike a Moebius strip is not allowed.<li>Faces are supposed to be <em>G</em><sup>1</sup> (meaning that thenormal varies continuously on the topological entity, even as patch or curve boundaries are traversed).  But small deviationsfrom <em>G</em><sup>1</sup> are permitted.For example,a topological surface composed of noncoplanar lineartriangles is allowed, as long as the dihedral anglesbetween neighboring triangles are near 180 degrees.See the <a href="meshgen.html#curvecontrol"><code>curvecontrol</code></a> optionto the mesh generator.<li>In QMG 2.0, toplogical faces must be connected.</ul><p>In QMG, each face is allowed to have property-value pairs.  This isa list of pairs of strings.  The first string in each pair is the propertyname, and the second string is the value of that property.  For example, surfaces canhave a <strong>color</strong> property that indicates their colorto be used by graphics routines.  Property names are case-insensitive, e.g., <strong>color</strong> and<strong>CoLOR</strong> are not distinguished.The brep itself can haveproperty-value pairs that apply to the whole brep.  One importantglobal property is <strong>geo_global_id</strong>.  The corresponding valuefor this property is intended to be a universally unique ID stringfor the brep.  In QMG 2.0, there is no system for generating theseID strings, but some of the routines like <a href="ref.html#gmchecktri"><code>gmchecktri</code></a>check them.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产清纯美女被跳蛋高潮一区二区久久w | 4438x成人网最大色成网站| 99re在线视频这里只有精品| 成人app在线观看| 性做久久久久久久免费看| 中文字幕av一区二区三区| 欧美一区欧美二区| 99国产精品久久久久久久久久久 | 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 精品国产一二三区| 欧美日韩视频在线一区二区| 成人理论电影网| 精品亚洲欧美一区| 青草av.久久免费一区| 亚洲一区二区三区四区在线观看 | 欧美喷水一区二区| 色综合色综合色综合色综合色综合 | 午夜精品福利视频网站| 亚洲精品高清在线观看| 国产精品青草久久| 久久色.com| 国产日产欧美一区| 精品国产a毛片| 久久综合九色综合欧美98| 日韩女优av电影| 久久久综合视频| 久久久99精品免费观看不卡| 欧美一级久久久| 欧美日韩精品欧美日韩精品一| 欧美日韩1区2区| 884aa四虎影成人精品一区| 欧美日韩黄色影视| 日韩美一区二区三区| 久久久久综合网| 国产精品女主播在线观看| 中文字幕在线不卡一区二区三区| 国产精品家庭影院| 亚洲成人综合网站| 加勒比av一区二区| jvid福利写真一区二区三区| 91在线免费播放| 欧美妇女性影城| 日本一区二区高清| 性久久久久久久久| 不卡一区二区三区四区| 亚洲日本va在线观看| 亚洲激情在线播放| 久久www免费人成看片高清| 国产成人鲁色资源国产91色综| 91视频免费观看| 欧美精品一区二区三区蜜桃 | 久久综合九色综合97婷婷| 综合久久给合久久狠狠狠97色| 蜜桃视频一区二区三区 | 91视频.com| 国产欧美一区二区精品性| 洋洋av久久久久久久一区| 国产精品综合网| 777奇米成人网| 亚洲午夜久久久久中文字幕久| 精品在线你懂的| 欧美系列在线观看| 国产精品福利一区二区| 国产成人自拍在线| 精品国产在天天线2019| 日韩va亚洲va欧美va久久| 欧美色国产精品| 中文字幕综合网| 色综合欧美在线| 亚洲欧洲99久久| 色综合av在线| 一区二区三区精品视频| 成人一级片网址| 欧美国产精品中文字幕| 国产成人午夜精品影院观看视频 | 欧美一级日韩一级| 日本va欧美va欧美va精品| 欧美一区二区日韩一区二区| 婷婷亚洲久悠悠色悠在线播放| 日本韩国欧美一区| 亚洲成人av福利| 91精品午夜视频| 日本不卡中文字幕| 日韩欧美一区二区视频| 黄一区二区三区| 久久久亚洲精华液精华液精华液| 国产高清一区日本| 亚洲欧美日韩国产另类专区 | 亚洲成人综合在线| 日韩欧美国产午夜精品| 国产69精品久久777的优势| 综合欧美一区二区三区| 欧美日韩免费观看一区二区三区 | 久久女同精品一区二区| 99久久99久久综合| 午夜精品福利久久久| 欧美国产在线观看| 欧美视频在线一区| 丰满白嫩尤物一区二区| 亚洲成人av福利| 亚洲视频免费看| 日韩一级视频免费观看在线| 成人网在线播放| 美脚の诱脚舐め脚责91 | 精品一区二区国语对白| 一区二区三区不卡在线观看 | 欧美三级电影一区| 高清视频一区二区| 久久国产精品72免费观看| 亚洲日本在线视频观看| 国产日韩精品久久久| 日韩欧美色综合网站| 欧美亚一区二区| 成人动漫av在线| 丁香六月综合激情| 久久99国产精品免费网站| 国产制服丝袜一区| 亚洲国产乱码最新视频| 亚洲美女一区二区三区| 国产精品国产三级国产普通话蜜臀 | 亚洲同性gay激情无套| 久久久久久99久久久精品网站| 日韩一区二区视频| 欧美丰满美乳xxx高潮www| 91成人在线精品| 色94色欧美sute亚洲13| 在线日韩av片| 欧美最猛性xxxxx直播| 精品福利av导航| 欧美一区二区成人| 欧美精品一区二区三区在线播放| 日韩欧美国产综合| 久久精品亚洲国产奇米99| 精品国产成人在线影院| 久久精品一级爱片| 国产精品美女一区二区在线观看| 国产精品私房写真福利视频| 国产精品无人区| 亚洲香蕉伊在人在线观| 天堂av在线一区| 久久电影网电视剧免费观看| 久久99日本精品| 国产91精品欧美| 91精彩视频在线| 日韩美女在线视频| 中文字幕一区二区三| 日韩 欧美一区二区三区| 国产福利一区二区三区在线视频| 99r精品视频| 久久免费视频色| 欧美国产激情一区二区三区蜜月| 亚洲欧美综合在线精品| 91福利视频久久久久| 日韩精品一区二区三区中文精品| 国产精品家庭影院| 久久成人麻豆午夜电影| 欧美亚洲国产怡红院影院| 久久精品视频一区二区三区| 秋霞成人午夜伦在线观看| 99热精品一区二区| 欧美精品一区二区三区四区| 亚洲国产日韩一区二区| 91麻豆视频网站| 国产欧美日韩在线视频| 久久精品72免费观看| 欧美色男人天堂| 一区二区三区在线观看视频| 国产精品99久久久久久宅男| 日韩视频免费直播| 亚洲电影在线播放| 欧美性猛交一区二区三区精品| 国产精品每日更新| www.99精品| 久久久久久久久一| 国产精品99久久久久久久vr| 欧美mv日韩mv亚洲| 国模少妇一区二区三区| 久久综合色播五月| 国产精品一区在线| 久久69国产一区二区蜜臀| 91精品国产色综合久久ai换脸| 性欧美大战久久久久久久久| 欧美精品自拍偷拍| 日本一区中文字幕| 精品国产伦一区二区三区观看体验| 久久99精品视频| 亚洲精品在线免费播放| 成人性生交大片免费看视频在线| 国产女人aaa级久久久级 | 国产亚洲制服色| 99国产精品国产精品毛片| 亚洲综合成人网| 日韩一区和二区| 99re成人精品视频| 免费看欧美美女黄的网站| 欧美国产一区二区| 成人免费视频视频| 色婷婷久久一区二区三区麻豆| 一区二区三区美女视频| 精品国产乱码91久久久久久网站|