亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? meshgen.html

?? matlab有限元分析工具,比經較全面的一個手冊,請大家下載呀
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
            "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title> The QMG Mesh Generator </title>
</head>
<body BGCOLOR="#E0FFE0" TEXT="#000000" LINK = "#0080C0" VLINK = "#004060" ALINK = "#FF0000" >
<center>
<table>
<tr>
<td>
<a href="qmg2_0_home.html"><img src=logo1.jpg alt="QMG logo"></a></td>
<td>
<h1>
The QMG Mesh Generator
</h1>
</td>
</table>
</center>
QMG 2.0 provides a quadtree/octree mesh generator.  (The
Delaunay mesh generator available in QMG 1.1 has been
discontinued.)
The mesh generator
takes as input a <a href="geom.html#breps">brep</a>, that
is, a boundary representation of a two- or three-dimensional
geometric object
and produces as output a triangulation of that brep.  
The mesh generator operates only on full-dimensional breps (that
is, breps whose intrinsic and embedded dimension are equal).
The
triangulation is stored as a <a href="geom.html#meshes">simplicial
complex</a>.  The mesh generator introduces <em>Steiner points</em>,
that is, triangulation vertices that are not necessarily vertices
of the original brep. (Indeed, in three dimensions, it
is not possible in general to triangulate a domain
without introducing Steiner points.)  

<p>
The mesh generator is invoked as follows in Matlab:
<blockquote>
<strong>
<em>s</em> = gmmeshgen(<em>brep</em>, <em>opt</em><sub>1</sub>, 
<em>val</em><sub>1</sub>, ..., ,<em>opt</em><sub><em>k</em></sub>, 
<em>val</em><sub><em>k</em></sub>);
</strong>
</blockquote>
or in Tcl/Tk:
<blockquote>
<strong>
gmset <em>s</em> [gmmeshgen <em>brep</em> 
<em>opt</em><sub>1</sub> <em>val</em><sub>1</sub> ... 
<em>opt</em><sub><em>k</em></sub> <em>val</em><sub><em>k</em></sub>]
</strong>
</blockquote>

<p>
The return variable <em>s</em> is a 
simplicial complex.  The first argument to the routine is the brep to
triangulate.  The remaining arguments are 
keyword-value pairs.  Each <em>opt</em> is a string
that specifies a keyword from the list below,
 and each <em>val</em> is its corresponding value.
The keywords may be abbreviated. 

<h3><a name="sizecontrol">Mesh grading control</a></h3>

Two keyword arguments to the mesh generator are usedfor mesh grading control:<strong>userdata</strong> and 
<strong>sizecontrol</strong>.The mesh grading control function determines an upper bound on how
big the mesh elements should be
at every point. As the mesh generator executes, it repeatedly
calls the function named
<code>gm_sizecontrol</code> and <code>gm_sizecontrol_interior</code>.  
(These functions
are in m-files with the same names in Matlab and in file
<code>qmg_sizecontrol.tcl</code> for Tcl/Tk.)
The
arguments to <code>gm_sizecontrol</code> are the real coordinates of
the point in the domain, the <strong>userdata</strong>
value (currently unused
by the routine) passed into the mesh generator, 
the <strong>sizecontrol</strong> value passed into the mesh generator
(either using the keyword argument or as a property-value pair
on a face), 
the face containing the point,
the geometric entity index within that face
and the parametric coordinates within that geometric
entity. This function is invoked for points on the boundary.
In the case of points in the interior, there is a similar
function <code>gm_sizecontrol_interior</code> which has four arguments:
real coordinates, the 
<strong>sizecontrol</strong> value,
the <strong>userdata</strong>
value (currently unused
by the routine) passed into the mesh generator, 
and the topological entity (a region) containing the point.
<p>The two functions <code>gm_sizecontrol</code> and<code>gm_sizecontrol_interior</code> use this information to compute a positive number, which is themaximum allowable size of elements at the input point.  The meshgenerator uses this value when deciding whether to refine thequadtree/octree.Thus, the <strong>sizecontrol</strong> keyword option isinterpreted by these two functions andcontrols the mesh
upper bound size.  The option's default value is 
<strong>(const 1e307)</strong>,
a huge upper bound 
that essentially means no upper limit is imposed on the mesh size.
The quadtree/octree mesh generator
uses the number as an upper bound on its largest box size.  Therefore,
this size control is somewhat imprecise since box sizes occur only
in powers of two.
See the  <a href="userfunc.html">page</a> on user-specified
functions for the details
on how the mesh grading control works, along with examples.

<p>
If every size control value is constant,then <code>gm_sizecontrol</code> in Matlab or Tcl is
not invoked.  Constant size control functions are handled entirely within
the C++ code for efficiency.

A nonconstant
size-control functionshould vary smoothly over the domain, because sharp
variations may be missed by the mesh generator.  
Furthermore, sharp variations may lead to elements with badaspect ratio.
A good way to obtain very small 
elements in a specific local
area in the domain is to put aboundary vertex, edge or surface (internal or external)in the location where you want the small elements and tagit with a <strong>sizecontrol</strong> 
property.  

<p>
As an example of a nonconstant interesting size-control function, take a look
at <code>test1</code> in the test set, which is a size function based a rule in
Claes Johnson's book <em>Numerical solutions of partial differential
equations by the finite element method,</em> Cambridge University Press,
1987.

<h3> <a name="curvecontrol">Curvature control</a></h3>

The <strong>curvecontrol</strong>
value controls how much the boundary is allowed to deviate
from being flat over each simplex in the final mesh.  
A small value of curvature control forces the mesh
generator to refine the mesh at the boundary.

<p>
<a name="curvemeas"></a>
The interpretation of the curvature control argument is as follows.
Suppose the value is <em>p</em>.  Let <em>x</em><sub>1</sub>, 
<em>x</em><sub>2</sub>
be two distinct points lying
on the same a boundary face <em>F</em>
in an octree box.  Let <em>n</em><sub>1</sub>, 
<em>n</em><sub>2</sub> be the normals at 
<em>x</em><sub>1</sub>, <em>x</em><sub>2</sub>
if <em>F</em> is 2-dimensional,
else let <em>n</em><sub>1</sub>, <em>n</em><sub>2</sub>
be the tangents at  <em>x</em><sub>1</sub>, 
<em>x</em><sub>2</sub> if <em>F</em> is 1-dimensional.
Then if 
||<em>n</em><sub>1</sub>&#8722;<em>n</em><sub>2</sub>||&gt;<em>p</em>,
the box must be split.  The norm
used in this comparison
is like the <em>l</em><sup>2</sup> norm but is 
based on a 26-sided polyhedron rather than a sphere 
(for efficiency).

<p>
Thus, if <em>p</em> is sqrt(2), this allows the boundary to bend by about 90 degrees
over one simplex (because two unit vectors at right angles are distance
sqrt(2) from each other in the usual 2-norm.)
The default value of the curvature setting is
0.5.  Values larger than 1.0 are not recommended.

<p>
The format for this setting is a string that obeys similar rules
to the <strong>sizecontrol</strong> setting described above.  
For instance, you
can declare 
<strong>(const <em>X</em>)</strong> or 
<strong>(formula <em>X</em>)</strong>
as values for curvature
control.  You can also modify the <code>gm_curvecontrol</code> function 
(which is in <code>gm_curvecontrol.m</code> under Matlab
and in <code>qmg_sizecontrol.tcl</code> under Tcl/Tk)
which
is responsible for interpreting these strings.  You can also
tag individual topological entities with their own 
<strong>curvecontrol</strong>
property-value pairs.  In a situation where multiple curvature
control strings apply, the most stringent one determines the
curvature control.

<p>
For a brep
containing a face that is not <em>G</em><sup>1</sup> (i.e., the normal does not vary continuously
over the patches of that face, for instance, because the face is
made up of noncoplanar linear patches),  there is a minimum positive 
allowable value for 
the curvature control.  Below this value, the mesh generator
will fail.  In particular, it will terminate with an error message
that the quadtree has been split too finely because a curvature
setting could not be met.
To help determine this
lower bound for your brep, use the 
<a href="ref.html#gmchecknormals"><code>gmchecknormals</code></a>
function.  

<h3><a name ="tolkey">Tolerance</a></h3>
The value of the <strong>tol</strong>
 keyword controls the tolerance used by the mesh generator.
This tolerance is an indication of
how accurate the input brep's geometric data
is.

<p>
<a name="default_tol"></a>
The tolerance is
a number between 0 and 1 and is used by QMG to determine when two
items are the same and when they are different.  The default value of the tol argument is the value of the global
variable <code>gm_default_tol</code> in Tcl or
<code>GM_DEFAULT_TOL</code> in Matlab.
This global variable is initialized to
1e-14 by the Matlab or Tcl/Tk startup routines.  

<p>
QMG uses double precision arithmetic, so the smallest reasonable setting
for this parameter is about 1e-16.  But we found that roundoff error
quickly builds, so 1e-14 seems reasonable.  An error messagefrom the mesh generator like &#8220;Ray missed starting patch&#8221; indicates
tolerance is set too low.

<p>
Note that QMG routines automatically take into account the inherent
size of the object you are working with and use this number to
scale
tolerance when necessary.  For example, given a cube of side length 1e10 and a tolerance of 1e-11, QMG will assume items in this brep
are the same if they are within a distance 1e-1.


<h3>Log file</h3>
Because the quadtree/octree
mesh generator is still in an experimental stage,
we have found it very handy to have log of its computations.
The value associated with keyword <strong>logfile</strong> specifies the name
of the file
in
which the log is written.  Under Tcl/Tk,
the default is mglogNNN, where NNN
is the PID of the process running the mesh generator.
Under matlab, the default is mglog.
Set this value to <strong>/dev/null</strong>
in unix or <strong>nul</strong> in Windows to prevent generation of the log.
<h3>Log file verbosity</h3>
The value for
<strong>verbosity</strong> determines how much information to log.
This is a nonnegative
integer; larger integers mean that more information is logged.
For larger 3D problems, mesh generationwith the verbosity level of 4 or higher could generate a log thatfills up your disk.  The default value is 1.
The logfile begins with a preamble that confirms the calling arguments
to the routine.  
For verbosity 2 or higher, it traces the creation and deletion of
every single box.

<p>
If you discover a problem with the mesh generator, please save
the log file when you report the problem.

<h3> <a name="showgui">Displaying the gui</a></h3>
The keyword <strong>showgui</strong> takes either 0 or 1 as a value.  
Setting showgui
to 1 (the default) causesthe quadtree/octree mesh generator to put up an informational
display as it runs to update you on its progress.  This GUI is 
described <a href="#gui">below</a>.

<h3><a name="expansion">Expansion factors</a></h3>

You can specify a vector of expansion factors with keyword 
<strong>expansion</strong>.
The expansion factors are a decreasing sequence of <em>d</em>+1 
numbers, where <em>d</em> is the dimension of the brep.
All must be positive and no more than 0.5.  In the
quadtree/octree mesh generator, boxes are expanded when the
algorithm looks for crowding, and these boxes control the
degree of expansion.  They also serve as upper bounds on the
warping distances.  Generally these number should be left
at their defaults. Increasing these numbers in some cases may improve aspect 
ratio.

<h3><a name="orientation">Orientation</a></h3>
You can specify values of either
1 (default) or 2 for keyword <strong>orientation</strong>.  
A value of 1 tells
the mesh generator to generate all 
<a href="geom.html#orientation">right-handed</a> elements.
A value of 2 tells the mesh generator to generate
all left-handed elements.

<h3><a name="aspdegrade">Aspect ratio degrade factors for warping</a></h3>
A tuning parameter <strong>aspdegrade</strong> should probably be left at
default values.
This parameter is an array of numbers in the interval (0,1)
(three numbers for 2D, four numbers for 3D).


<h2><a name="checktri"> Checking the output</a></h2>

The function <a href="ref.html#gmchecktri"><code>gmchecktri</code></a> 
checks the output of the mesh generator.
The calling sequence is:
<blockquote>
Matlab:
<code>
gmchecktri(b, s {, checko {, tol}}) <br>
</code>
Tcl/Tk:
<code>
gmchecktri $b $s {$checko {$tol}}
</code>
</blockquote>
where b is the brep and s is the simplicial complex.  It returns the
worst aspect ratio among simplicies in the triangulation, or a negative
number if there is an error in a mesh.
Because the
mesh generator is still experimental, it is recommended that you
run this utility after every single run of the mesh generator.
The optional argument checko indicates whether you want to check
simplex orientation; its value is 0, 1 or 2.  If checko=0, then 
correct orientation of simplices is not checked.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品色噜噜| 97se亚洲国产综合自在线| 在线91免费看| 日韩精品一区第一页| 欧美男女性生活在线直播观看| 亚洲一区在线观看网站| 欧美日韩国产美| 日本不卡在线视频| 精品精品国产高清一毛片一天堂| 国产激情视频一区二区三区欧美| 亚洲国产精品二十页| 成人av手机在线观看| 亚洲美女视频在线观看| 欧美日韩一区二区三区免费看 | 欧美三级欧美一级| 蜜臀av性久久久久蜜臀av麻豆| 欧美大片拔萝卜| 成人性生交大片免费| 亚洲久草在线视频| 欧美日韩黄色影视| 国产综合久久久久影院| 国产精品乱码妇女bbbb| 欧美性生活大片视频| 青青草成人在线观看| 久久久精品免费网站| 91色综合久久久久婷婷| 日本美女一区二区三区视频| 国产三级精品三级| 日本道在线观看一区二区| 日韩av成人高清| 国产精品美女一区二区| 欧美日韩国产首页| 成人午夜电影久久影院| 亚洲电影视频在线| 久久夜色精品一区| 99riav一区二区三区| 美女被吸乳得到大胸91| 亚洲欧美视频一区| 精品国产露脸精彩对白| 欧美色图免费看| 成人午夜私人影院| 日韩精品91亚洲二区在线观看| 国产精品视频一区二区三区不卡| 欧美性色综合网| 丁香啪啪综合成人亚洲小说| 蜜桃视频一区二区三区| 亚洲另类中文字| 国产校园另类小说区| 在线播放亚洲一区| 色婷婷精品久久二区二区蜜臀av | 国产成人亚洲综合a∨婷婷| 亚洲一区影音先锋| 国产精品三级久久久久三级| 日韩一区二区在线免费观看| 色婷婷综合五月| 国产片一区二区| 日韩视频在线你懂得| 成人h动漫精品一区二区| 日韩 欧美一区二区三区| 国产精品美女视频| 日韩精品影音先锋| 色综合天天综合网天天狠天天 | 国产精品久久久久影院| 欧美日韩国产高清一区二区三区 | 精品国产伦理网| 一本一本久久a久久精品综合麻豆| 伦理电影国产精品| 尤物视频一区二区| 国产亚洲一区二区三区四区| 欧美精品电影在线播放| 99久久精品国产毛片| 亚洲国产人成综合网站| 国产精品久久久久影院| 精品成人私密视频| 在线不卡中文字幕播放| 在线一区二区视频| 成人精品一区二区三区四区| 久久草av在线| 首页综合国产亚洲丝袜| 一区二区三区中文免费| 国产精品色眯眯| 欧美一区二区三区性视频| av一区二区三区四区| 国产乱人伦偷精品视频不卡| 久久精品99国产国产精| 午夜欧美在线一二页| 亚洲自拍偷拍av| 亚洲黄色免费网站| 亚洲精品自拍动漫在线| 国产精品区一区二区三| 国产三级一区二区三区| 99久久夜色精品国产网站| 99精品视频在线观看免费| 成人网页在线观看| 国产成人av一区二区| 狠狠网亚洲精品| 国产一区二区视频在线| 国产在线不卡一区| 国产一区二区按摩在线观看| 韩国在线一区二区| 麻豆视频观看网址久久| 蜜臀av性久久久久蜜臀av麻豆| 亚洲国产视频一区| 亚洲一卡二卡三卡四卡无卡久久| 亚洲国产婷婷综合在线精品| 亚洲成a人v欧美综合天堂| 亚洲1区2区3区视频| 天天色天天操综合| 日本不卡中文字幕| 精品影视av免费| 国产精品一区二区不卡| 成人理论电影网| 成人av午夜电影| av午夜一区麻豆| 色欧美片视频在线观看| 日本韩国欧美三级| 精品视频123区在线观看| 91精品国产黑色紧身裤美女| 精品国产乱码久久| 久久精品视频一区二区三区| 国产精品久久久久久久久免费相片| 国产精品欧美久久久久无广告| 亚洲欧美另类图片小说| 亚洲国产精品一区二区www| 日本女优在线视频一区二区| 国产最新精品免费| 91亚洲永久精品| 欧美电影在线免费观看| 欧美不卡在线视频| 国产精品免费视频一区| 亚洲网友自拍偷拍| 日本女人一区二区三区| 色综合网色综合| 欧美一区二区女人| 国产三级精品三级| 亚洲一区二区美女| 国产一区二区在线免费观看| 色嗨嗨av一区二区三区| 欧美一区二区三区视频在线| 中文字幕精品三区| 视频一区视频二区在线观看| 国产传媒日韩欧美成人| 91国偷自产一区二区开放时间 | 亚洲欧美怡红院| 肉色丝袜一区二区| 成人精品视频一区二区三区| 欧美日韩久久一区二区| 国产日韩欧美麻豆| 天堂av在线一区| av在线不卡电影| 欧美伊人久久久久久午夜久久久久| 精品国产一区二区三区久久久蜜月 | 色婷婷综合久久久中文一区二区 | 国产91露脸合集magnet| 欧美性受xxxx| 国产日韩欧美激情| 天堂午夜影视日韩欧美一区二区| 国产成人免费视频| 欧美老肥妇做.爰bbww| 亚洲欧洲一区二区三区| 青娱乐精品视频| 7777精品伊人久久久大香线蕉的| 亚洲国产精品成人综合| 美女视频一区二区三区| 欧洲另类一二三四区| 国产精品美女视频| 国产麻豆精品一区二区| 欧美日韩国产片| 亚洲视频一区二区在线| 激情六月婷婷综合| 欧美一区二区人人喊爽| 亚洲五码中文字幕| 一本一本大道香蕉久在线精品 | 国产精品久久看| 国产精品一区二区在线播放| 欧美一级黄色录像| 久久激五月天综合精品| 欧美一级高清片在线观看| 午夜视频一区二区| 欧美在线免费观看亚洲| 成人免费在线播放视频| 国产精品一二一区| 久久影院视频免费| 五月综合激情日本mⅴ| 在线观看精品一区| 亚洲精品美国一| 91高清在线观看| 亚洲精品日日夜夜| 一本色道亚洲精品aⅴ| 中文字幕一区二区三区视频| av中文字幕不卡| 亚洲欧美激情小说另类| 91老师国产黑色丝袜在线| 椎名由奈av一区二区三区| www.色精品| 亚洲美女一区二区三区| 一本大道久久a久久综合婷婷| 亚洲激情自拍视频| 在线视频国内自拍亚洲视频| 亚洲成人免费在线|