?? aesopt.h
字號:
length feature of the code. Include this section if you place more
emphasis on speed rather than code size.
*/
#if 1
#define FAST_VARIABLE
#endif
/* 12. INTERNAL TABLE CONFIGURATION
This cipher proceeds by repeating in a number of cycles known as 'rounds'
which are implemented by a round function which can optionally be speeded
up using tables. The basic tables are each 256 32-bit words, with either
one or four tables being required for each round function depending on
how much speed is required. The encryption and decryption round functions
are different and the last encryption and decrytpion round functions are
different again making four different round functions in all.
This means that:
1. Normal encryption and decryption rounds can each use either 0, 1
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
2. The last encryption and decryption rounds can also use either 0, 1
or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
Include or exclude the appropriate definitions below to set the number
of tables used by this implementation.
*/
#if 1 /* set tables for the normal encryption round */
#define ENC_ROUND FOUR_TABLES
#elif 0
#define ENC_ROUND ONE_TABLE
#else
#define ENC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the last encryption round */
#define LAST_ENC_ROUND FOUR_TABLES
#elif 0
#define LAST_ENC_ROUND ONE_TABLE
#else
#define LAST_ENC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the normal decryption round */
#define DEC_ROUND FOUR_TABLES
#elif 0
#define DEC_ROUND ONE_TABLE
#else
#define DEC_ROUND NO_TABLES
#endif
#if 1 /* set tables for the last decryption round */
#define LAST_DEC_ROUND FOUR_TABLES
#elif 0
#define LAST_DEC_ROUND ONE_TABLE
#else
#define LAST_DEC_ROUND NO_TABLES
#endif
/* The decryption key schedule can be speeded up with tables in the same
way that the round functions can. Include or exclude the following
defines to set this requirement.
*/
#if 1
#define KEY_SCHED FOUR_TABLES
#elif 0
#define KEY_SCHED ONE_TABLE
#else
#define KEY_SCHED NO_TABLES
#endif
/* END OF CONFIGURATION OPTIONS */
#define NO_TABLES 0 /* DO NOT CHANGE */
#define ONE_TABLE 1 /* DO NOT CHANGE */
#define FOUR_TABLES 4 /* DO NOT CHANGE */
#define NONE 0 /* DO NOT CHANGE */
#define PARTIAL 1 /* DO NOT CHANGE */
#define FULL 2 /* DO NOT CHANGE */
#if defined(BLOCK_SIZE) && ((BLOCK_SIZE & 3) || BLOCK_SIZE < 16 || BLOCK_SIZE > 32)
#error An illegal block size has been specified.
#endif
#if !defined(BLOCK_SIZE)
#define RC_LENGTH 29
#else
#define RC_LENGTH 5 * BLOCK_SIZE / 4 - (BLOCK_SIZE == 16 ? 10 : 11)
#endif
/* Disable at least some poor combinations of options */
#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
#undef LAST_ENC_ROUND
#define LAST_ENC_ROUND NO_TABLES
#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
#undef LAST_ENC_ROUND
#define LAST_ENC_ROUND ONE_TABLE
#endif
#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
#undef ENC_UNROLL
#define ENC_UNROLL NONE
#endif
#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
#undef LAST_DEC_ROUND
#define LAST_DEC_ROUND NO_TABLES
#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
#undef LAST_DEC_ROUND
#define LAST_DEC_ROUND ONE_TABLE
#endif
#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
#undef DEC_UNROLL
#define DEC_UNROLL NONE
#endif
/* upr(x,n): rotates bytes within words by n positions, moving bytes to
higher index positions with wrap around into low positions
ups(x,n): moves bytes by n positions to higher index positions in
words but without wrap around
bval(x,n): extracts a byte from a word
NOTE: The definitions given here are intended only for use with
unsigned variables and with shift counts that are compile
time constants
*/
#if (INTERNAL_BYTE_ORDER == AES_LITTLE_ENDIAN)
#if defined(_MSC_VER)
#define upr(x,n) _lrotl((aes_32t)(x), 8 * (n))
#else
#define upr(x,n) ((aes_32t)(x) << 8 * (n) | (aes_32t)(x) >> 32 - 8 * (n))
#endif
#define ups(x,n) ((aes_32t)(x) << 8 * (n))
#define bval(x,n) ((aes_08t)((x) >> 8 * (n)))
#define bytes2word(b0, b1, b2, b3) \
(((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
#endif
#if (INTERNAL_BYTE_ORDER == AES_BIG_ENDIAN)
#define upr(x,n) ((aes_32t)(x) >> 8 * (n) | (aes_32t)(x) << 32 - 8 * (n))
#define ups(x,n) ((aes_32t)(x) >> 8 * (n)))
#define bval(x,n) ((aes_08t)((x) >> 24 - 8 * (n)))
#define bytes2word(b0, b1, b2, b3) \
(((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
#endif
#if defined(SAFE_IO)
#define word_in(x) bytes2word((x)[0], (x)[1], (x)[2], (x)[3])
#define word_out(x,v) { (x)[0] = bval(v,0); (x)[1] = bval(v,1); \
(x)[2] = bval(v,2); (x)[3] = bval(v,3); }
#elif (INTERNAL_BYTE_ORDER == PLATFORM_BYTE_ORDER)
#define word_in(x) *(aes_32t*)(x)
#define word_out(x,v) *(aes_32t*)(x) = (v)
#else
#if !defined(bswap_32)
#if !defined(_MSC_VER)
#define _lrotl(x,n) ((aes_32t)(x) << n | (aes_32t)(x) >> 32 - n)
#endif
#define bswap_32(x) ((_lrotl((x),8) & 0x00ff00ff) | (_lrotl((x),24) & 0xff00ff00))
#endif
#define word_in(x) bswap_32(*(aes_32t*)(x))
#define word_out(x,v) *(aes_32t*)(x) = bswap_32(v)
#endif
/* the finite field modular polynomial and elements */
#define WPOLY 0x011b
#define BPOLY 0x1b
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
#define m1 0x80808080
#define m2 0x7f7f7f7f
#define FFmulX(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
/* The following defines provide alternative definitions of FFmulX that might
give improved performance if a fast 32-bit multiply is not available. Note
that a temporary variable u needs to be defined where FFmulX is used.
#define FFmulX(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
#define m4 (0x01010101 * BPOLY)
#define FFmulX(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
*/
/* Work out which tables are needed for the different options */
#ifdef AES_ASM
#ifdef ENC_ROUND
#undef ENC_ROUND
#endif
#define ENC_ROUND FOUR_TABLES
#ifdef LAST_ENC_ROUND
#undef LAST_ENC_ROUND
#endif
#define LAST_ENC_ROUND FOUR_TABLES
#ifdef DEC_ROUND
#undef DEC_ROUND
#endif
#define DEC_ROUND FOUR_TABLES
#ifdef LAST_DEC_ROUND
#undef LAST_DEC_ROUND
#endif
#define LAST_DEC_ROUND FOUR_TABLES
#ifdef KEY_SCHED
#undef KEY_SCHED
#define KEY_SCHED FOUR_TABLES
#endif
#endif
#if defined(ENCRYPTION) || defined(AES_ASM)
#if ENC_ROUND == ONE_TABLE
#define FT1_SET
#elif ENC_ROUND == FOUR_TABLES
#define FT4_SET
#else
#define SBX_SET
#endif
#if LAST_ENC_ROUND == ONE_TABLE
#define FL1_SET
#elif LAST_ENC_ROUND == FOUR_TABLES
#define FL4_SET
#elif !defined(SBX_SET)
#define SBX_SET
#endif
#endif
#if defined(DECRYPTION) || defined(AES_ASM)
#if DEC_ROUND == ONE_TABLE
#define IT1_SET
#elif DEC_ROUND == FOUR_TABLES
#define IT4_SET
#else
#define ISB_SET
#endif
#if LAST_DEC_ROUND == ONE_TABLE
#define IL1_SET
#elif LAST_DEC_ROUND == FOUR_TABLES
#define IL4_SET
#elif !defined(ISB_SET)
#define ISB_SET
#endif
#endif
#if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
#if KEY_SCHED == ONE_TABLE
#define LS1_SET
#define IM1_SET
#elif KEY_SCHED == FOUR_TABLES
#define LS4_SET
#define IM4_SET
#elif !defined(SBX_SET)
#define SBX_SET
#endif
#endif
#ifdef FIXED_TABLES
#define prefx extern const
#else
#define prefx extern
extern aes_08t tab_init;
void gen_tabs(void);
#endif
prefx aes_32t rcon_tab[29];
#ifdef SBX_SET
prefx aes_08t s_box[256];
#endif
#ifdef ISB_SET
prefx aes_08t inv_s_box[256];
#endif
#ifdef FT1_SET
prefx aes_32t ft_tab[256];
#endif
#ifdef FT4_SET
prefx aes_32t ft_tab[4][256];
#endif
#ifdef FL1_SET
prefx aes_32t fl_tab[256];
#endif
#ifdef FL4_SET
prefx aes_32t fl_tab[4][256];
#endif
#ifdef IT1_SET
prefx aes_32t it_tab[256];
#endif
#ifdef IT4_SET
prefx aes_32t it_tab[4][256];
#endif
#ifdef IL1_SET
prefx aes_32t il_tab[256];
#endif
#ifdef IL4_SET
prefx aes_32t il_tab[4][256];
#endif
#ifdef LS1_SET
#ifdef FL1_SET
#undef LS1_SET
#else
prefx aes_32t ls_tab[256];
#endif
#endif
#ifdef LS4_SET
#ifdef FL4_SET
#undef LS4_SET
#else
prefx aes_32t ls_tab[4][256];
#endif
#endif
#ifdef IM1_SET
prefx aes_32t im_tab[256];
#endif
#ifdef IM4_SET
prefx aes_32t im_tab[4][256];
#endif
/* Set the number of columns in nc. Note that it is important
that nc is a constant which is known at compile time if the
highest speed version of the code is needed.
*/
#if defined(BLOCK_SIZE)
#define nc (BLOCK_SIZE >> 2)
#else
#define nc (cx->n_blk >> 2)
#endif
/* generic definitions of Rijndael macros that use tables */
#define no_table(x,box,vf,rf,c) bytes2word( \
box[bval(vf(x,0,c),rf(0,c))], \
box[bval(vf(x,1,c),rf(1,c))], \
box[bval(vf(x,2,c),rf(2,c))], \
box[bval(vf(x,3,c),rf(3,c))])
#define one_table(x,op,tab,vf,rf,c) \
( tab[bval(vf(x,0,c),rf(0,c))] \
^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
#define four_tables(x,tab,vf,rf,c) \
( tab[0][bval(vf(x,0,c),rf(0,c))] \
^ tab[1][bval(vf(x,1,c),rf(1,c))] \
^ tab[2][bval(vf(x,2,c),rf(2,c))] \
^ tab[3][bval(vf(x,3,c),rf(3,c))])
#define vf1(x,r,c) (x)
#define rf1(r,c) (r)
#define rf2(r,c) ((r-c)&3)
/* perform forward and inverse column mix operation on four bytes in long word x in */
/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
#define dec_fmvars
#if defined(FM4_SET) /* not currently used */
#define fwd_mcol(x) four_tables(x,fm_tab,vf1,rf1,0)
#elif defined(FM1_SET) /* not currently used */
#define fwd_mcol(x) one_table(x,upr,fm_tab,vf1,rf1,0)
#else
#undef dec_fmvars
#define dec_fmvars aes_32t f1, f2;
#define fwd_mcol(x) (f1 = (x), f2 = FFmulX(f1), f2 ^ upr(f1 ^ f2, 3) ^ upr(f1, 2) ^ upr(f1, 1))
#endif
#define dec_imvars
#if defined(IM4_SET)
#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0)
#elif defined(IM1_SET)
#define inv_mcol(x) one_table(x,upr,im_tab,vf1,rf1,0)
#else
#undef dec_imvars
#define dec_imvars aes_32t f2, f4, f8, f9;
#define inv_mcol(x) \
(f9 = (x), f2 = FFmulX(f9), f4 = FFmulX(f2), f8 = FFmulX(f4), f9 ^= f8, \
f2 ^= f4 ^ f8 ^ upr(f2 ^ f9,3) ^ upr(f4 ^ f9,2) ^ upr(f9,1))
#endif
#if defined(FL4_SET)
#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c)
#elif defined(LS4_SET)
#define ls_box(x,c) four_tables(x,ls_tab,vf1,rf2,c)
#elif defined(FL1_SET)
#define ls_box(x,c) one_table(x,upr,fl_tab,vf1,rf2,c)
#elif defined(LS1_SET)
#define ls_box(x,c) one_table(x,upr,ls_tab,vf1,rf2,c)
#else
#define ls_box(x,c) no_table(x,s_box,vf1,rf2,c)
#endif
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -