?? chitable.m
字號:
function X2 = chitable(P,v)
%CHITABLE computes the "percentage points" of the
%chi-squared distribution, as in Abramowitz & Stegun Table 26.8
% X2 = CHITABLE( P, v ) returns the value of chi-squared
% corresponding to v degrees of freedom and probability P.
% P is the probability that the sum of squares of v unit-variance
% normally-distributed random variables is <= X2.
% P and v may be matrices of the same size size, or either
% may be a scalar.
%
% e.g., to find the 95% confidence interval for 2 degrees
% of freedom, use CHITABLE( .95, 2 ), yielding 5.99,
% in agreement with Abramowitz & Stegun's Table 26.8
%
% This result can be checked through the function
% CHIPROB( 5.99, 2 ), yielding 0.9500
%
% The familiar 1.96-sigma confidence bounds enclosing 95% of
% a 1-D gaussian is found through
% sqrt( CHITABLE( .95, 1 )), yielding 1.96
%
% See also CHIPROB
%
%Peter R. Shaw, WHOI
%Leslie Rosenfeld, MBARI
% References: Press et al., Numerical Recipes, Cambridge, 1986;
% Abramowitz & Stegun, Handbook of Mathematical Functions, Dover, 1972.
% Peter R. Shaw, Woods Hole Oceanographic Institution
% Woods Hole, MA 02543 pshaw@whoi.edu
% Leslie Rosenfeld, MBARI
% Last revision: Peter Shaw, Oct 1992: fsolve with version 4
% ** Calls function CHIAUX **
% Computed using the Incomplete Gamma function,
% as given by Press et al. (Recipes) eq. (6.2.17)
[mP,nP]=size(P);
[mv,nv]=size(v);
if mP~=mv | nP~=nv,
if mP==1 & nP==1,
P=P*ones(mv,nv);
elseif mv==1 & nv==1,
v=v*ones(mP,nP);
else
error('P and v must be the same size')
end
end
[m,n]=size(P); X2 = zeros(m,n);
for i=1:m,
for j=1:n,
if v(i,j)<=10,
x0=P(i,j)*v(i,j);
else
x0=v(i,j);
end
% Note: "old" and "new" calls to fsolve may or may not follow
% Matlab version 3.5 -> version 4 (so I'm keeping the old call around...)
% X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[v(i,j),P(i,j)]); %(old call)
X2(i,j) = fsolve('chiaux',x0,zeros(16,1),[],[v(i,j),P(i,j)]);
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -