?? svml.m
字號:
function net = svml(fname, varargin)% SVML - Wrapper for SVMlight% % NET = SVML(FNAME, OPTIONS)% Generate the SVMlight wrapper structure. FNAME is the file name% under which SVMlight will save its data files. FNAME can be left% empty (FNAME=''), in which case a random filename will be selected.% OPTIONS may either be a structure generated by SVMLOPT, or any other% sequence of arguments that is accepted by SVMLOPT.%% Accepted options are:% Field SVM light option Range, description% 'Verbosity' -v {0 .. 3}, default value 1% Verbosity level% 'Regression' -z {0, 1}, default value 0% Switch between regression [1] and% classification [0]% 'C' -c (0, Inf), default value (avg. x*x)^-1% Trade-off between error and margin% 'TubeWidth' -w (0, Inf), default value 0.1% Epsilon width of tube for regression% 'CostFactor' -j (0, Inf), default value 1% Cost-Factor by which training errors on% positive examples outweight errors on% negative examples% 'Biased' -b {0, 1}, default value 1% Use biased hyperplane x*w+b0 [1] instead of% unbiased x*w0 [0]% 'RemoveIncons' -i {0, 1}, default value 0% Remove inconsistent training examples and% retrain% 'ComputeLOO' -x {0, 1}, default value 0% Compute leave-one-out estimates [1]% 'XialphaRho' -o )0, 2), default value 1.0% Value of rho for XiAlpha-estimator and for% pruning leave-one-out computation% 'XialphaDepth' -k {0..100}, default value 0% Search depth for extended XiAlpha-estimator % 'TransPosFrac' -p (0..1), default value ratio of% positive and negative examples in the% training data. Fraction of unlabeled% examples to be classified into the positive% class% 'Kernel' -t {0..4}, default value 1% Type of kernel function:% 0: linear% 1: polynomial (s a*b+c)^d% 2: radial basis function exp(-gamma ||a-b||^2)% 3: sigmoid tanh(s a*b + c)% 4: user defined kernel from kernel.h% 'KernelParam' -d, -g, -s, -r, -u% Depending on the kernel, this vector% contains [d] for polynomial kernel, [gamma]% for RBF, [s, c] for tanh kernel, string for% user-defined kernel% 'MaximumQP' -q {2..}, default value 10% Maximum size of QP-subproblems% 'NewVariables' -n {2..}, default value is the value chosen% for 'MaximumQP'. Number of new variables% entering the working set in each% iteration. Use smaller values to prevent% zig-zagging% 'CacheSize' -m (5..Inf), default value 40.% Size of cache for kernel evaluations in MB% 'EpsTermin' -e (0..Inf), default value 0.001% Allow that error for termination criterion% [y [w*x+b] - 1] < eps% 'ShrinkIter' -h {5..Inf}, default value 100.% Number of iterations a variable needs to be% optimal before considered for shrinking% 'ShrinkCheck' -f {0, 1}, default value 1% Do final optimality check for variables% removed by shrinking. Although this test is% usually positive, there is no guarantee% that the optimum was found if the test is% omitted.% 'TransLabelFile' -l String. File to write predicted labels of% unlabeled examples into after transductive% learning.% 'AlphaFile' -a String. Write all alphas to this file after% learning (in the same order as in the% training set).%% Examples:% SVML('svmlightdata', 'Kernel', 0, 'C', 1);% SVML('', 'Kernel', 0, 'C', 1);% The above call is equivalent to% OPTS = SVMLOPT('Kernel', 0, 'C', 1);% SVML('', OPTS);%%% See also SVMLOPT, SVMLTRAIN, SVMLFWD%% % Copyright (c) by Anton Schwaighofer (2002)% $Revision: 1.4 $ $Date: 2002/02/19 12:22:17 $% mailto:anton.schwaighofer@gmx.net% % This program is released unter the GNU General Public License.% if nargin<1, fname = '';endif nargin<2, options = struct([]);endnet.type = 'svml';net.options = svmlopt(varargin{:});net.fname = fname;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -