?? areamod.f90
字號:
#include <misc.h>#include <preproc.h>module areaMod!----------------------------------------------------------------------- ! ! Purpose: ! area averaging routines!! Method: ! This subroutine is used in conjunction with areaave.F for area-average!!-----------------------------------------------------------------------! $Id: areaMod.F90,v 1.9.2.6 2002/05/13 18:00:01 erik Exp $!----------------------------------------------------------------------- use precision use clm_varcon, only : re use shr_const_mod, only : SHR_CONST_PI implicit none integer, parameter :: maxovr = 100000 INTERFACE celledge MODULE procedure celledge_regional MODULE procedure celledge_global END INTERFACE INTERFACE cellarea MODULE procedure cellarea_regional MODULE procedure cellarea_global END INTERFACE!=======================================================================contains!======================================================================= subroutine areaini (nlon_i , nlat_i, numlon_i, lon_i, lat_i, area_i, mask_i , & nlon_o , nlat_o, numlon_o, lon_o, lat_o, area_o, fland_o, & mx_ovr , novr_i2o, iovr_i2o, jovr_i2o, wovr_i2o )!----------------------------------------------------------------------- ! ! Purpose: ! area averaging initialization !! Method: ! This subroutine is used in conjunction with areaave.F for area-average! mapping of a field from one grid to another. !! areaini - initializes indices and weights for area-averaging from ! input grid to output grid! areamap - called by areaini: finds indices and weights! areaovr - called by areamap: finds if cells overlap and area of overlap! areaave - does area-averaging from input grid to output grid! ! To map from one grid to another, must first call areaini to build! the indices and weights (iovr_i2o, jovr_i2o, wovr_i2o). Then must! call areaave to get new field on output grid.!! Not all grid cells on the input grid will be used in the area-averaging! of a field to the output grid. Only input grid cells with [mask_i] = 1! contribute to output grid cell average. If [mask_i] = 0, input grid cell ! does not contribute to output grid cell. This distinction is not usually! required for atm -> land mapping, because all cells on the atm grid have! data. But when going from land -> atm, only land grid cells have data.! Non-land grid cells on surface grid do not have data. So if output grid cell! overlaps with land and non-land cells (input grid), can only use land! grid cells when computing area-average. !! o Input and output grids can be ANY resolution BUT:!! a. Grid orientation -- Grids can be oriented south to north! (i.e. cell(lat+1) is north of cell(lat)) or from north to ! south (i.e. cell(lat+1) is south of cell(lat)). Both grids must be ! oriented from west to east, i.e., cell(lon+1) must be east of cell(lon)!! b. Grid domain -- Grids do not have to be global. Both grids are defined! by their north, east, south, and west edges (edge_i and edge_o in! this order, i.e., edge_i(1) is north and edge_i(4) is west).! ! For partial grids, northern and southern edges are any latitude! between 90 (North Pole) and -90 (South Pole). Western and eastern! edges are any longitude between -180 and 180, with longitudes ! west of Greenwich negative.!! For global grids, northern and southern edges are 90 (North Pole) ! and -90 (South Pole). The grids do not have to start at the! same longitude, i.e., one grid can start at Dateline and go east;! the other grid can start at Greenwich and go east. Longitudes for! the western edge of the cells must increase continuously and span! 360 degrees. Examples!! West edge East edge! ---------------------------------------------------! Dateline : -180 to 180 (negative W of Greenwich)! Greenwich (centered): 0 - dx/2 to 360 - dx/2 !! c. Both grids can have variable number of longitude points for each! latitude strip. However, the western edge of the first point in each! latitude must be the same for all latitudes. Likewise, for the! eastern edge of the last point. That is, each latitude strip must span ! the same longitudes, but the number of points to do this can be different!! d. One grid can be a sub-set (i.e., smaller domain) than the other grid.! In this way, an atmospheric dataset for the entire globe can be! used in a simulation for a region 30N to 50N and 130W to 70W -- the ! code will extract the appropriate data. The two grids do not have to! be the same resolution. Area-averaging will work for full => partial! grid but obviously will not work for partial => full grid.!! o Field values fld_i on an input grid with dimensions nlon_i and nlat_i =>! field values fld_o on an output grid with dimensions nlon_o and nlat_o as!! fld_o(io,jo) =! fld_i(i_ovr(io,jo, 1),j_ovr(io,jo, 1)) * w_ovr(io,jo, 1) ! ... + ... +! fld_i(i_ovr(io,jo,mx_ovr),j_ovr(io,jo,mx_ovr)) * w_ovr(io,jo,mx_ovr)!! o Error checks:!! Overlap weights of input cells sum to 1 for each output cell.! Global sum of dummy field is conserved for input => output area-average.! ! Author: Gordon Bonan! !-----------------------------------------------------------------------! ------------------------ arguments -------------------------------- integer , intent(in) :: nlon_i !input grid: max number of longitude points integer , intent(in) :: nlat_i !input grid: number of latitude points integer , intent(in) :: numlon_i(nlat_i) !input grid: number lon points at each lat real(r8), intent(inout) :: lon_i(nlon_i+1,nlat_i) !input grid: longitude, west edge (degrees) real(r8), intent(in) :: lat_i(nlat_i+1) !input grid: latitude, south edge (degrees) real(r8), intent(in) :: area_i(nlon_i,nlat_i) !input grid: cell area real(r8), intent(in) :: mask_i(nlon_i,nlat_i) !input grid: mask (0, 1) integer , intent(in) :: nlon_o !output grid: max number of longitude points integer , intent(in) :: nlat_o !output grid: number of latitude points integer , intent(in) :: numlon_o(nlat_o) !output grid: number lon points at each lat real(r8), intent(in) :: lon_o(nlon_o+1,nlat_o) !output grid: longitude, west edge (degrees) real(r8), intent(in) :: lat_o(nlat_o+1) !output grid: latitude, south edge (degrees) real(r8), intent(in) :: area_o(nlon_o,nlat_o) !output grid: cell area real(r8), intent(in) :: fland_o(nlon_o,nlat_o) !output grid: fraction that is land integer , intent(in) :: mx_ovr !maximum number of overlapping cells integer , intent(out):: novr_i2o(nlon_o,nlat_o) !number of overlapping input cells integer , intent(out):: iovr_i2o(nlon_o,nlat_o,mx_ovr)!lon index of overlap input cell integer , intent(out):: jovr_i2o(nlon_o,nlat_o,mx_ovr)!lat index of overlap input cell real(r8), intent(out):: wovr_i2o(nlon_o,nlat_o,mx_ovr)!weight of overlap input cell! --------------------------------------------------------------------! ------------------------ local variables --------------------------- real(r8),allocatable :: fld_o(:,:) !output grid: dummy field real(r8),allocatable :: fld_i(:,:) !input grid: dummy field real(r8) :: sum_fldo !global sum of dummy output field real(r8) :: sum_fldi !global sum of dummy input field real(r8) :: relerr = 0.00001 !relative error for error checks integer :: ii !input grid longitude loop index integer :: ji !input grid latitude loop index integer :: io !output grid longitude loop index integer :: jo !output grid latitude loop index real(r8) :: dx_i !input grid longitudinal range real(r8) :: dy_i !input grid latitudinal range real(r8) :: dx_o !output grid longitudinal range real(r8) :: dy_o !output grid latitudinal range! --------------------------------------------------------------------! Dynamically allocate memory allocate (fld_o(nlon_o,nlat_o)) allocate (fld_i(nlon_i,nlat_i))! -----------------------------------------------------------------! Get indices and weights for mapping from input grid to output grid! ----------------------------------------------------------------- call areamap (nlon_i , nlat_i , nlon_o , nlat_o , & lon_i , lat_i , lon_o , lat_o , & numlon_i , numlon_o , mask_i , mx_ovr , & novr_i2o , iovr_i2o , jovr_i2o , wovr_i2o , & fland_o , area_o ) ! -----------------------------------------------------------------! Error check: global sum fld_o = global sum fld_i. ! This true only if both grids span the same domain. ! ----------------------------------------------------------------- dx_i = lon_i(nlon_i+1,1) - lon_i(1,1) dx_o = lon_o(nlon_o+1,1) - lon_o(1,1) if (lat_i(nlat_i+1) > lat_i(1)) then !South to North grid dy_i = lat_i(nlat_i+1) - lat_i(1) else !North to South grid dy_i = lat_i(1) - lat_i(nlat_i+1) end if if (lat_o(nlat_o+1) > lat_o(1)) then !South to North grid dy_o = lat_o(nlat_o+1) - lat_o(1) else !North to South grid dy_o = lat_o(1) - lat_o(nlat_o+1) end if if (abs(dx_i-dx_o)>relerr .or. abs(dy_i-dy_o)>relerr) then write (6,*) 'AREAINI warning: conservation check not valid for' write (6,*) ' input grid of ',nlon_i,' x ',nlat_i write (6,*) ' output grid of ',nlon_o,' x ',nlat_o return end if! make dummy input field and sum globally sum_fldi = 0. do ji = 1, nlat_i do ii = 1, numlon_i(ji) fld_i(ii,ji) = ((ji-1)*nlon_i + ii) * mask_i(ii,ji) sum_fldi = sum_fldi + area_i(ii,ji)*fld_i(ii,ji) end do end do! area-average output field from input field call areaave (nlat_i , nlon_i , numlon_i , fld_i , & nlat_o , nlon_o , numlon_o , fld_o , & iovr_i2o , jovr_i2o , wovr_i2o , mx_ovr )! global sum of output field -- must multiply by fraction of output! grid that is land as determined by input grid sum_fldo = 0. do jo = 1, nlat_o do io = 1, numlon_o(jo) sum_fldo = sum_fldo + area_o(io,jo)*fld_o(io,jo) * fland_o(io,jo) end do end do! check for conservation if ( abs(sum_fldo/sum_fldi-1.) > relerr ) then write (6,*) 'AREAINI error: input field not conserved' write (6,'(a30,e20.10)') 'global sum output field = ',sum_fldo write (6,'(a30,e20.10)') 'global sum input field = ',sum_fldi call endrun end if deallocate (fld_o) deallocate (fld_i) return end subroutine areaini!======================================================================= subroutine areaave (nlat_i , nlon_i , numlon_i, fld_i , & nlat_o , nlon_o , numlon_o, fld_o , & i_ovr , j_ovr , w_ovr , nmax )!----------------------------------------------------------------------- ! ! Purpose: ! area averaging of field from input to output grids!! Method: ! ! Author: Gordon Bonan! !-----------------------------------------------------------------------! ------------------------ arguments --------------------------------- integer ,intent(in) :: nlat_i !input grid : number of latitude points integer ,intent(in) :: nlon_i !input grid : max number longitude points integer ,intent(in) :: numlon_i(nlat_i) !input grid : number of lon points at each lat real(r8),intent(in) :: fld_i(nlon_i,nlat_i) !input grid : field integer ,intent(in) :: nlat_o !output grid: number of latitude points integer ,intent(in) :: nlon_o !output grid: max number of longitude points integer ,intent(in) :: numlon_o(nlat_o) !output grid: number of lon points at each lat real(r8),intent(out):: fld_o(nlon_o,nlat_o) !field for output grid integer ,intent(in) :: nmax !input grid : max number of overlapping cells integer ,intent(in) :: i_ovr(nlon_o,nlat_o,nmax) !lon index, overlapping input cell integer ,intent(in) :: j_ovr(nlon_o,nlat_o,nmax) !lat index, overlapping input cell real(r8),intent(in) :: w_ovr(nlon_o,nlat_o,nmax) !overlap weights for input cells! --------------------------------------------------------------------! ------------------- local variables ----------------------------- integer jo !latitude index for output grid integer io !longitude index for output grid integer ji !latitude index for input grid integer ii !longitude index for input grid integer n !overlapping cell index! -----------------------------------------------------------------! initialize field on output grid to zero everywhere!$OMP PARALLEL DO PRIVATE (jo,io) do jo = 1, nlat_o do io = 1, numlon_o(jo) fld_o(io,jo) = 0.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -