亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? grcalc.f90

?? CCSM Research Tools: Community Atmosphere Model (CAM)
?? F90
?? 第 1 頁 / 共 3 頁
字號:
#include <misc.h>#include <params.h>! Note that this routine has 2 complete blocks of code for PVP vs.! non-PVP.  Make sure to make appropriate coding changes where! necessary.#if ( defined PVP )subroutine grcalcs (irow    ,ztodt   ,grts    ,grqs    ,grths   , &                    grds    ,grus    ,gruhs   ,grvs    ,grvhs   , &                    grpss   ,grdpss  ,grpms   ,grpls   ,grtms   , &                    grtls   ,grqms   ,grqls   )!-----------------------------------------------------------------------!! Purpose:! Complete inverse legendre transforms from spectral to Fourier space at! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric fourier coeffs of temperature and! "grtha" contains the antisymmetric fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!! Original version:  CCM1!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/04/13 22:40:37 rosinski Exp $! $Author: rosinski $!!-----------------------------------------------------------------------   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra   implicit none#include <comhd.h>!! Input arguments!   integer , intent(in)   :: irow              ! latitude pair index   real(r8), intent(in)   :: ztodt             ! twice the timestep unless nstep = 0!! Output arguments: symmetric fourier coefficients!   real(r8), intent(out) :: grts(plond,plev)  ! sum(n) of t(n,m)*P(n,m)   real(r8), intent(out) :: grqs(plond,plev)  ! sum(n) of q(n,m)*P(n,m)   real(r8), intent(out) :: grths(plond,plev) ! sum(n) of K(2i)*t(n,m)*P(n,m)   real(r8), intent(out) :: grds(plond,plev)  ! sum(n) of d(n,m)*P(n,m)   real(r8), intent(out) :: grus(plond,plev)  ! sum(n) of z(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: gruhs(plond,plev) ! sum(n) of K(2i)*z(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grvs(plond,plev)  ! sum(n) of d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grvhs(plond,plev) ! sum(n) of K(2i)*d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grpss(plond)      ! sum(n) of lnps(n,m)*P(n,m)   real(r8), intent(out) :: grdpss(plond)     ! sum(n) of K(4)*(n(n+1)/a**2)**2*2dt*lnps(n,m)*P(n,m)   real(r8), intent(out) :: grpms(plond)    ! sum(n) of lnps(n,m)*H(n,m)   real(r8), intent(out) :: grpls(plond)    ! sum(n) of lnps(n,m)*P(n,m)*m/a   real(r8), intent(out) :: grtms (plond,plev)   real(r8), intent(out) :: grtls (plond,plev)   real(r8), intent(out) :: grqms (plond,plev)   real(r8), intent(out) :: grqls (plond,plev)!!---------------------------Local workspace-----------------------------!   real(r8) gru1s (plond,plev)   ! sum(n) of d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) gruh1s(plond,plev)   ! sum(n) of K(2i)*d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grv1s (plond,plev)   ! sum(n) of z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grvh1s(plond,plev)   ! sum(n) of K(2i)*z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) zdfac (2*pnmax,plev) ! horiz. diffusion factor (vort,div) (complex)   real(r8) tqfac (2*pnmax,plev) ! horiz. diffusion factor (t,q) (complex)   real(r8) alp2  (2*pspt)       ! Legendre functions (complex)   real(r8) dalp2 (2*pspt)       ! derivative of Legendre functions (complex)   real(r8) alpn2 (2*pspt)       ! (a*m/(n(n+1)))*Legendre functions (complex)   real(r8) dalpn2(2*pspt)       ! (a/(n(n+1)))*derivative of Legendre functions (complex)!                                ! betwn absolute and relative vorticity   integer k                     ! level index   integer m                     ! diagonal element(index) of spec. array   integer n                     ! meridional wavenumber index   integer ne                    ! index into spectral arrays   integer mn                    ! index into spectral arrays   integer mnc                   ! index into spectral arrays   integer mnev                  ! index into spectral arrays!!-----------------------------------------------------------------------!! Compute alpn and dalpn! Expand polynomials and derivatives to complex form to allow largest ! possible vector length and multiply by appropriate factors!   do n=1,pmax      ne = n - 1!dir$ ivdep      do m=1,nmreduced(n,irow)         mnc = 2*(m+nalp(n))         mn = m + nalp(n)         alp2(mnc-1) = alp(mn,irow)         alp2(mnc  ) = alp(mn,irow)         dalp2(mnc-1) = dalp(mn,irow)*ra         dalp2(mnc  ) = dalp(mn,irow)*ra         alpn2(mnc-1) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         alpn2(mnc  ) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         dalpn2(mnc-1) = dalp(mn,irow)*(rsq(m+ne)*ra)         dalpn2(mnc  ) = dalp(mn,irow)*(rsq(m+ne)*ra)      end do   end do!! Initialize sums!   grts(:,:) = 0.   grqs(:,:) = 0.   grths(:,:) = 0.   grds(:,:)  = 0.   grus(:,:)  = 0.   gruhs(:,:) = 0.   grvs(:,:)  = 0.   grvhs(:,:) = 0.   grpss(:)   = 0.   grdpss(:)   = 0.   grpms(:)   = 0.   grpls(:)   = 0.   grtms(:,:)   = 0.   grtls(:,:)   = 0.   grqms(:,:)   = 0.   grqls(:,:)   = 0.!!-----------------------------------------------------------------------!! Computation for multilevel variables!   do k=1,plev!! Diffusion factors: expand for longest possible vectors!!dir$ ivdep      do n = 1,pnmax         zdfac(n*2-1,k) = -hdifzd(n,k)         zdfac(n*2  ,k) = -hdifzd(n,k)         tqfac(n*2-1,k) = -hdiftq(n,k)         tqfac(n*2  ,k) = -hdiftq(n,k)      end do!! Initialize local sums!      gru1s(:,k) = 0.      gruh1s(:,k) = 0.      grv1s(:,k) = 0.      grvh1s(:,k) = 0.!! Evaluate symmetric components involving P and antisymmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n = 1,ncutoff,2         ne = 2*(n-1)         do m = 1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn   = m + 2*nalp(n)            grts  (m,k) = grts  (m,k) + t (mnev,k)*alp2  (mn)            grths (m,k) = grths (m,k) + t (mnev,k)*alp2  (mn)*tqfac(m+ne,k)            grqs  (m,k) = grqs  (m,k) + q (mnev,k)*alp2  (mn)            grds  (m,k) = grds  (m,k) + d (mnev,k)*alp2  (mn)            gru1s (m,k) = gru1s (m,k) + d (mnev,k)*alpn2 (mn)            gruh1s(m,k) = gruh1s(m,k) + d (mnev,k)*alpn2 (mn)*zdfac(m+ne,k)            grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2 (mn)            grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2 (mn)*zdfac(m+ne,k)         end do      end do!! Evaluate antisymmetric components involving P and symmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n = 2,ncutoff,2         ne = 2*(n-1)         do m = 1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn   = m + 2*nalp(n)            grtms (m,k) = grtms (m,k) + t (mnev,k)*dalp2 (mn)            grqms (m,k) = grqms (m,k) + q (mnev,k)*dalp2 (mn)            grus  (m,k) = grus  (m,k) + vz(mnev,k)*dalpn2(mn)            gruhs (m,k) = gruhs (m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            grvs  (m,k) = grvs  (m,k) - d (mnev,k)*dalpn2(mn)            grvhs (m,k) = grvhs (m,k) - d (mnev,k)*dalpn2(mn)*zdfac(m+ne,k)         end do      end do   end do                    ! k=1,plev!! For short diagonals, repeat above loops with vectorization in! vertical, instead of along diagonals, to keep vector lengths from! getting too short.!   if (ncutoff.lt.pmax) then      do n = ncutoff+1,pmax,2 ! ncutoff guaranteed even         ne = 2*(n-1)         do m = 1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn   = m + 2*nalp(n)            do k = 1,plev               grts  (m,k) = grts  (m,k) + t (mnev,k)*alp2  (mn)               grths (m,k) = grths (m,k) + t (mnev,k)*alp2  (mn)*tqfac(m+ne,k)               grqs  (m,k) = grqs  (m,k) + q (mnev,k)*alp2  (mn)               grds  (m,k) = grds  (m,k) + d (mnev,k)*alp2  (mn)               gru1s (m,k) = gru1s (m,k) + d (mnev,k)*alpn2 (mn)               gruh1s(m,k) = gruh1s(m,k) + d (mnev,k)*alpn2 (mn)*zdfac(m+ne,k)               grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2 (mn)               grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2 (mn)*zdfac(m+ne,k)            end do         end do      end do            do n = ncutoff+2,pmax,2         ne = 2*(n-1)         do m = 1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn   = m + 2*nalp(n)            do k = 1,plev               grtms (m,k) = grtms (m,k) + t (mnev,k)*dalp2 (mn)               grqms (m,k) = grqms (m,k) + q (mnev,k)*dalp2 (mn)               grus  (m,k) = grus  (m,k) + vz(mnev,k)*dalpn2(mn)               gruhs (m,k) = gruhs (m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)               grvs  (m,k) = grvs  (m,k) - d (mnev,k)*dalpn2(mn)               grvhs (m,k) = grvhs (m,k) - d (mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            end do         end do      end do   end if                    ! ncutoff.lt.pmax   do k=1,plev!! Combine the two parts of u(m) and v(m) and compute derivatives!!dir$ ivdep      do m=1,nmmax(irow)         grus (2*m-1,k) = grus (2*m-1,k) + gru1s (2*m  ,k)         gruhs(2*m-1,k) = gruhs(2*m-1,k) + gruh1s(2*m  ,k)         grus (2*m  ,k) = grus (2*m  ,k) - gru1s (2*m-1,k)         gruhs(2*m  ,k) = gruhs(2*m  ,k) - gruh1s(2*m-1,k)         grvs (2*m-1,k) = grvs (2*m-1,k) + grv1s (2*m  ,k)         grvhs(2*m-1,k) = grvhs(2*m-1,k) + grvh1s(2*m  ,k)         grvs (2*m  ,k) = grvs (2*m  ,k) - grv1s (2*m-1,k)         grvhs(2*m  ,k) = grvhs(2*m  ,k) - grvh1s(2*m-1,k)!! Derivatives!         grtls(2*m-1,k) = -grts(2*m  ,k)*ra*xm(m)         grtls(2*m  ,k) =  grts(2*m-1,k)*ra*xm(m)         grqls(2*m-1,k) = -grqs(2*m  ,k)*ra*xm(m)         grqls(2*m  ,k) =  grqs(2*m-1,k)*ra*xm(m)      end do   end do!!-----------------------------------------------------------------------! Computation for single level variables.!! Evaluate symmetric components involving P and antisymmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=1,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpss (m) = grpss (m) + alps(mnev)*alp2(mn)         grdpss(m) = grdpss(m) + alps(mnev)*alp2(mn)*hdfst4(ne+(m+1)/2)*ztodt      end do   end do!! Evaluate antisymmetric components involving P and symmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=2,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpms(m) = grpms(m) + alps(mnev)*dalp2(mn)      end do   end do!! Multiply by m/a to get d(ln(p*))/dlamda! and by 1/a to get (1-mu**2)d(ln(p*))/dmu!   do m=1,nmmax(irow)      grpls(2*m-1) = -grpss(2*m  )*ra*xm(m)      grpls(2*m  ) =  grpss(2*m-1)*ra*xm(m)   end do   returnend subroutine grcalcssubroutine grcalca (irow    ,ztodt   ,grta    ,grqa    ,grtha   , &                    grda    ,grua    ,gruha   ,grva    ,grvha   , &                    grpsa   ,grdpsa  ,grpma   ,grpla   ,grtma   , &                    grtla   ,grqma   ,grqla   )!-----------------------------------------------------------------------!! Purpose:! Complete inverse legendre transforms from spectral to Fourier space at! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric fourier coeffs of temperature and! "grtha" contains the antisymmetric fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!! Original version:  CCM1!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/04/13 22:40:37 rosinski Exp $! $Author: rosinski $!!-----------------------------------------------------------------------   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra   implicit none#include <comhd.h>!! Input arguments!   integer , intent(in)   :: irow              ! latitude pair index   real(r8), intent(in)   :: ztodt             ! twice the timestep unless nstep = 0!! Output arguments: anti-symmetric fourier coefficients!   real(r8), intent(out) :: grta(plond,plev)  ! sum(n) of t(n,m)*P(n,m)   real(r8), intent(out) :: grqa(plond,plev)  ! sum(n) of q(n,m)*P(n,m)   real(r8), intent(out) :: grtha(plond,plev) ! sum(n) of K(2i)*t(n,m)*P(n,m)   real(r8), intent(out) :: grda(plond,plev)  ! sum(n) of d(n,m)*P(n,m)   real(r8), intent(out) :: grua(plond,plev)  ! sum(n) of z(n,m)*H(n,m)*a/(n(n+1))

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
精品一二线国产| 欧美三区在线视频| 国精品**一区二区三区在线蜜桃| 一区二区三区四区激情| 一区在线观看视频| 最新日韩在线视频| 亚洲精品va在线观看| 亚洲精品乱码久久久久久 | 成人av资源站| www.亚洲激情.com| 91美女福利视频| 欧美色网站导航| 911精品产国品一二三产区| 91麻豆精品国产综合久久久久久| 欧美一区国产二区| 久久精品欧美日韩| 亚洲欧美一区二区三区极速播放 | 精品一区二区三区在线观看国产| 久久国产精品99精品国产| 国产一区二区三区免费观看| 日韩专区一卡二卡| 韩国在线一区二区| 99精品一区二区三区| 欧美在线免费播放| 欧美精品一区二区三区一线天视频| 国产欧美一区二区精品性色超碰| 国产精品不卡一区| 日韩av网站在线观看| 国产精品羞羞答答xxdd| 91成人在线免费观看| 精品嫩草影院久久| 亚洲精品一二三区| 精品一区二区三区视频| 色婷婷综合久久久久中文一区二区| 欧美人伦禁忌dvd放荡欲情| 久久久久综合网| 亚洲专区一二三| 国产成人av电影免费在线观看| 色狠狠一区二区三区香蕉| 欧美v国产在线一区二区三区| 国产精品传媒视频| 韩日欧美一区二区三区| 欧美日韩亚洲综合一区| 中文字幕精品一区二区精品绿巨人 | 欧美吻胸吃奶大尺度电影| 日韩精品一区在线观看| 一区二区三区不卡在线观看| 国产一区三区三区| 欧美日韩国产大片| 中文字幕制服丝袜成人av| 日韩1区2区3区| 日本精品一区二区三区四区的功能| 日韩午夜电影av| 亚洲综合自拍偷拍| 成人激情免费网站| 久久精品在线观看| 蜜桃av噜噜一区| 9191国产精品| 五月综合激情网| 欧美午夜免费电影| 亚洲愉拍自拍另类高清精品| 波多野结衣一区二区三区| 久久夜色精品国产欧美乱极品| 日韩精品高清不卡| 欧美日韩久久不卡| 亚洲午夜免费电影| 欧美亚一区二区| 一区二区高清在线| 欧美性大战久久久久久久| ...中文天堂在线一区| av日韩在线网站| 中文字幕亚洲电影| 色综合视频在线观看| 中文字幕亚洲一区二区va在线| 成人精品免费网站| 欧美激情在线看| 不卡视频在线观看| 亚洲精品日日夜夜| 欧美影院一区二区三区| 亚洲国产欧美一区二区三区丁香婷| 99久久久无码国产精品| 亚洲同性gay激情无套| 91美女蜜桃在线| 午夜精品一区在线观看| 日韩一卡二卡三卡四卡| 免费成人在线网站| 久久久久久久久久美女| 粉嫩一区二区三区性色av| 中文字幕亚洲电影| 欧美午夜片在线看| 激情图片小说一区| 国产精品三级电影| 欧美影片第一页| 麻豆国产精品一区二区三区| 久久精品在这里| 91福利在线免费观看| 男女男精品网站| 日本一区二区三区国色天香 | 首页国产欧美日韩丝袜| 精品国产成人在线影院| 99久久伊人网影院| 亚洲高清不卡在线| 久久久久亚洲综合| 欧美性感一类影片在线播放| 精品在线免费观看| 亚洲黄色免费电影| 精品国产一区二区三区忘忧草 | 一区二区三区不卡在线观看| 8v天堂国产在线一区二区| 国产精品亚洲第一| 午夜精品久久久久久久99水蜜桃| 久久亚洲精精品中文字幕早川悠里| aa级大片欧美| 激情五月播播久久久精品| 一区二区视频在线看| 精品国产污污免费网站入口 | 亚洲精品中文字幕乱码三区| 日韩一区二区免费电影| 91在线观看高清| 精品亚洲porn| 日韩影院精彩在线| 怡红院av一区二区三区| 久久久久久久网| 欧美精品在线观看播放| av亚洲产国偷v产偷v自拍| 蜜臀精品一区二区三区在线观看| 国产精品少妇自拍| 日韩免费视频一区| 欧美日韩精品一区二区天天拍小说 | 不卡一区二区三区四区| 激情成人综合网| 天涯成人国产亚洲精品一区av| 日韩一区在线免费观看| 久久久久国色av免费看影院| 欧美大度的电影原声| 欧美伦理电影网| 欧美天天综合网| 91蜜桃在线观看| 99re热这里只有精品视频| 99精品偷自拍| 九九国产精品视频| 蜜臀久久久久久久| 日韩高清在线一区| 天堂久久久久va久久久久| 亚洲自拍偷拍图区| 亚洲国产精品综合小说图片区| 亚洲少妇30p| 一区二区三区高清| 亚洲最色的网站| 亚洲成人综合在线| 午夜视频在线观看一区二区三区| 一区二区成人在线| 亚洲成人三级小说| 天堂精品中文字幕在线| 日本一区中文字幕| 免费精品99久久国产综合精品| 青娱乐精品在线视频| 蜜桃一区二区三区四区| 激情五月婷婷综合网| 国产高清不卡一区二区| 高清成人在线观看| 国产老女人精品毛片久久| 国产一区999| 粉嫩av亚洲一区二区图片| 波波电影院一区二区三区| 91网站视频在线观看| 欧美性受xxxx| 精品三级av在线| 久久精品亚洲麻豆av一区二区| 国产精品嫩草影院com| 一区二区三区中文字幕电影| 亚洲午夜精品网| 极品少妇xxxx精品少妇| 成人高清视频在线| 欧美日韩国产大片| 久久久久久久国产精品影院| 最新热久久免费视频| 日韩福利视频导航| 粉嫩13p一区二区三区| 欧美浪妇xxxx高跟鞋交| 久久亚洲综合av| 亚洲自拍偷拍综合| 国产乱理伦片在线观看夜一区| 色婷婷亚洲精品| 精品国产伦理网| 亚洲男人的天堂网| 精品系列免费在线观看| 在线观看日韩毛片| 精品粉嫩超白一线天av| 亚洲男女毛片无遮挡| 久久成人免费电影| 在线精品视频一区二区三四| 久久综合九色综合欧美98| 亚洲一区影音先锋| 国产精品自拍毛片| 欧美日韩高清不卡| 国产精品福利av| 国产麻豆欧美日韩一区| 欧美人xxxx| 亚洲制服丝袜在线|