亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? grcalc.f90

?? CCSM Research Tools: Community Atmosphere Model (CAM)
?? F90
?? 第 1 頁 / 共 3 頁
字號:
#include <misc.h>#include <params.h>! Note that this routine has 2 complete blocks of code for PVP vs. non-PVP.! Make sure to make appropriate coding changes where necessary.#if ( defined PVP )subroutine grcalcs (irow    ,ztodt   ,grts    ,grths   ,grds    ,&                    grzs    ,grus    ,gruhs   ,grvs    ,grvhs   ,&                    grpss   ,grdpss  ,grpms   ,grpls   )!-----------------------------------------------------------------------!! Complete inverse Legendre transforms from spectral to Fourier space at ! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric Fourier coeffs of temperature and! "grtha" contains the antisymmetric Fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!!---------------------------Code history--------------------------------!! Original version:  CCM1! Standardized:      J. Rosinski, June 1992! Reviewed:          B. Boville, D. Williamson, J. Hack, August 1992! Reviewed:          B. Boville, D. Williamson, April 1996!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/09/16 22:13:25 rosinski Exp $! $Author: rosinski $!   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra, ez   implicit none#include <comhd.h>!! Input arguments!   integer, intent(in) :: irow         ! latitude pair index   real(r8), intent(in) :: ztodt       ! twice the timestep unless nstep = 0!! Output arguments: symmetric fourier coefficients!   real(r8), intent(out) :: grts(plond,plev)    ! sum(n) of t(n,m)*P(n,m)   real(r8), intent(out) :: grths(plond,plev)   ! sum(n) of K(2i)*t(n,m)*P(n,m)   real(r8), intent(out) :: grds(plond,plev)    ! sum(n) of d(n,m)*P(n,m)   real(r8), intent(out) :: grzs(plond,plev)    ! sum(n) of z(n,m)*P(n,m)   real(r8), intent(out) :: grus(plond,plev)    ! sum(n) of z(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: gruhs(plond,plev)   ! sum(n) of K(2i)*z(n,m)*H(n,m)*a/(n(n+1))    real(r8), intent(out) :: grvs(plond,plev)    ! sum(n) of d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grvhs(plond,plev)   ! sum(n) of K(2i)*d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grpss(plond)        ! sum(n) of lnps(n,m)*P(n,m)   real(r8), intent(out) :: grdpss(plond)       ! sum(n) of K(4)*(n(n+1)/a**2)**2*2dt*lnps(n,m)*P(n,m)   real(r8), intent(out) :: grpms(plond)        ! sum(n) of lnps(n,m)*H(n,m)   real(r8), intent(out) :: grpls(plond)        ! sum(n) of lnps(n,m)*P(n,m)*m/a!!---------------------------Local workspace-----------------------------!   real(r8) gru1s(plond,plev)   ! sum(n) of d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) gruh1s(plond,plev)  ! sum(n) of K(2i)*d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grv1s(plond,plev)   ! sum(n) of z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grvh1s(plond,plev)  ! sum(n) of K(2i)*z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) zdfac(2*pnmax,plev) ! horiz. diffusion factor (vort,div) (complex)   real(r8) tqfac(2*pnmax,plev) ! horiz. diffusion factor (t,q) (complex)   real(r8) alp2(2*pspt)        ! Legendre functions (complex)   real(r8) dalp2(2*pspt)       ! derivative of Legendre functions (complex)   real(r8) alpn2(2*pspt)       ! (a*m/(n(n+1)))*Legendre functions (complex)   real(r8) dalpn2(2*pspt)      ! (a/(n(n+1)))*derivative of Legendre functions (complex)   real(r8) dlpnz               ! (a/(n(n+1)))*H(0,1) for conversion bet abs and rel vort   real(r8) zurcor              ! conversion term relating abs. & rel. vort.   integer k                ! level index   integer m                ! diagonal element(index) of spectral array   integer n                ! meridional wavenumber index   integer ne               ! index into spectral arrays   integer mn               ! index into spectral arrays   integer mnc              ! index into spectral arrays   integer mnev             ! index into spectral arrays!!-----------------------------------------------------------------------!! Compute alpn and dalpn! Expand polynomials and derivatives to complex form to allow largest ! possible vector length and multiply by appropriate factors!   do n=1,pmax      ne = n - 1!dir$ ivdep      do m=1,nmreduced(n,irow)         mnc = 2*(m+nalp(n))         mn = m + nalp(n)         alp2(mnc-1) = alp(mn,irow)         alp2(mnc  ) = alp(mn,irow)         dalp2(mnc-1) = dalp(mn,irow)*ra         dalp2(mnc  ) = dalp(mn,irow)*ra         alpn2(mnc-1) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         alpn2(mnc  ) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         dalpn2(mnc-1) = dalp(mn,irow)*(rsq(m+ne)*ra)         dalpn2(mnc  ) = dalp(mn,irow)*(rsq(m+ne)*ra)      end do   end do   dlpnz = dalpn2(2*nalp(2)+1)   zurcor = ez*dlpnz!! Initialize sums!   grzs(:,:)  = 0.   grds(:,:)  = 0.   gruhs(:,:) = 0.   grvhs(:,:) = 0.   grths(:,:) = 0.   grpss(:)   = 0.   grus(:,:)  = 0.   grvs(:,:)  = 0.   grts(:,:)  = 0.   grpls(:)   = 0.   grpms(:)   = 0.   grdpss(:)   = 0.   do k=1,plev!! Diffusion factors: expand for longest possible vectors!!dir$ ivdep      do n=1,pnmax         zdfac(n*2-1,k) = -hdifzd(n,k)         zdfac(n*2  ,k) = -hdifzd(n,k)         tqfac(n*2-1,k) = -hdiftq(n,k)         tqfac(n*2  ,k) = -hdiftq(n,k)      end do      gru1s(:,k) = 0.      gruh1s(:,k) = 0.      grv1s(:,k) = 0.      grvh1s(:,k) = 0.!! Evaluate symmetric components involving P and antisymmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n=1,ncutoff,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            grts (m,k) = grts (m,k) + t(mnev,k)*alp2(mn)            grths(m,k) = grths(m,k) + t(mnev,k)*alp2(mn)*tqfac(m+ne,k)            grds(m,k) = grds(m,k) + d(mnev,k)*alp2(mn)            grzs(m,k) = grzs(m,k) + vz(mnev,k)*alp2(mn)            gru1s (m,k) = gru1s (m,k) + d(mnev,k)*alpn2(mn)            gruh1s(m,k) = gruh1s(m,k) + d(mnev,k)*alpn2(mn)*zdfac(m+ne,k)            grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2(mn)            grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2(mn)*zdfac(m+ne,k)         end do      end do!! Evaluate antisymmetric components involving P and symmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n=2,ncutoff,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            grus (m,k) = grus (m,k) + vz(mnev,k)*dalpn2(mn)            gruhs(m,k) = gruhs(m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            grvs (m,k) = grvs (m,k) - d(mnev,k)*dalpn2(mn)            grvhs(m,k) = grvhs(m,k) - d(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)         end do      end do   end do!! For short diagonals, repeat above loops with vectorization in vertical,! instead of along diagonals, to keep vector lengths from getting too short.!   if (ncutoff.lt.pmax) then      do n=ncutoff+1,pmax,2   ! ncutoff guaranteed even         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            do k=1,plev               grts (m,k) = grts (m,k) + t(mnev,k)*alp2(mn)               grths(m,k) = grths(m,k) + t(mnev,k)*alp2(mn)*tqfac(m+ne,k)               grds(m,k) = grds(m,k) + d(mnev,k)*alp2(mn)               grzs(m,k) = grzs(m,k) + vz(mnev,k)*alp2(mn)               gru1s (m,k) = gru1s (m,k) + d(mnev,k)*alpn2(mn)               gruh1s(m,k) = gruh1s(m,k) + d(mnev,k)*alpn2(mn)*zdfac(m+ne,k)               grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2(mn)               grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2(mn)*zdfac(m+ne,k)            end do         end do      end do      do n=ncutoff+2,pmax,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            do k=1,plev               grus (m,k) = grus (m,k) + vz(mnev,k)*dalpn2(mn)               gruhs(m,k) = gruhs(m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)               grvs (m,k) = grvs (m,k) - d(mnev,k)*dalpn2(mn)               grvhs(m,k) = grvhs(m,k) - d(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            end do         end do      end do   end if                      ! ncutoff.lt.pmax   do k=1,plev!! Combine the two parts of u(m) and v(m)!!dir$ ivdep      do m=1,nmmax(irow)         grus (2*m-1,k) = grus (2*m-1,k) + gru1s (2*m  ,k)         gruhs(2*m-1,k) = gruhs(2*m-1,k) + gruh1s(2*m  ,k)         grus (2*m  ,k) = grus (2*m  ,k) - gru1s (2*m-1,k)         gruhs(2*m  ,k) = gruhs(2*m  ,k) - gruh1s(2*m-1,k)         grvs (2*m-1,k) = grvs (2*m-1,k) + grv1s (2*m  ,k)         grvhs(2*m-1,k) = grvhs(2*m-1,k) + grvh1s(2*m  ,k)         grvs (2*m  ,k) = grvs (2*m  ,k) - grv1s (2*m-1,k)         grvhs(2*m  ,k) = grvhs(2*m  ,k) - grvh1s(2*m-1,k)      end do!! Remove Coriolis contribution to absolute vorticity from u(m)! Correction for u:zeta=vz-ez=(zeta+f)-f!      grus(1,k) = grus(1,k) - zurcor   end do!!-----------------------------------------------------------------------! Computation for single level variables.!! Evaluate symmetric components involving P and antisymmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=1,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpss (m) = grpss (m) + alps(mnev)*alp2(mn)         grdpss(m) = grdpss(m) + alps(mnev)*alp2(mn)*hdfst4(ne+(m+1)/2)*ztodt      end do   end do!! Evaluate antisymmetric components involving P and symmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=2,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpms(m) = grpms(m) + alps(mnev)*dalp2(mn)      end do   end do!! Multiply by m/a to get d(ln(p*))/dlamda! and by 1/a to get (1-mu**2)d(ln(p*))/dmu!   do m=1,nmmax(irow)      grpls(2*m-1) = -grpss(2*m  )*ra*xm(m)      grpls(2*m  ) =  grpss(2*m-1)*ra*xm(m)   end do!   returnend subroutine grcalcssubroutine grcalca (irow    ,ztodt   ,grta    ,grtha   ,grda    ,&                    grza    ,grua    ,gruha   ,grva    ,grvha   ,&                    grpsa   ,grdpsa  ,grpma   ,grpla   )!-----------------------------------------------------------------------!! Complete inverse Legendre transforms from spectral to Fourier space at ! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric Fourier coeffs of temperature and! "grtha" contains the antisymmetric Fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!!---------------------------Code history--------------------------------!! Original version:  CCM1! Standardized:      J. Rosinski, June 1992! Reviewed:          B. Boville, D. Williamson, J. Hack, August 1992! Reviewed:          B. Boville, D. Williamson, April 1996!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/09/16 22:13:25 rosinski Exp $! $Author: rosinski $!   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra, ez   implicit none#include <comhd.h>!! Input arguments!

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线区一区二视频| 国产精品18久久久| 制服丝袜一区二区三区| 人人超碰91尤物精品国产| 欧美一区二区三区视频在线| 久久精品久久久精品美女| 精品久久久久香蕉网| 顶级嫩模精品视频在线看| 亚洲另类一区二区| 欧美日韩免费观看一区二区三区 | 精品国产污网站| 国产美女在线精品| 亚洲视频一区二区在线| 欧美视频完全免费看| 美女视频黄久久| 国产亚洲精品7777| 日本道在线观看一区二区| 午夜日韩在线观看| 欧美韩国日本不卡| 欧美日韩一区不卡| 国产精品99久久久久久久女警 | 久久久久国产一区二区三区四区 | 久久综合色天天久久综合图片| 国产白丝网站精品污在线入口| 亚洲欧美日韩国产综合在线| 69久久99精品久久久久婷婷 | 久久精品国产99久久6| 国产精品久久久久久久浪潮网站 | 99国产精品久| 久久激五月天综合精品| 亚洲精品成人a在线观看| 日韩欧美一级精品久久| 一本久道中文字幕精品亚洲嫩| 日韩黄色片在线观看| 最新热久久免费视频| 日韩精品一区二区三区中文不卡 | 欧美一区永久视频免费观看| 粉嫩aⅴ一区二区三区四区五区| 性做久久久久久久免费看| 久久久久久久久99精品| 欧美日韩国产天堂| 国产成人精品免费| 久久精品国产一区二区三 | 日韩精品综合一本久道在线视频| 9l国产精品久久久久麻豆| 美女视频黄频大全不卡视频在线播放 | 日日夜夜精品免费视频| 久久久美女毛片| 91久久精品一区二区二区| 国产麻豆日韩欧美久久| 免费看日韩a级影片| 亚洲午夜久久久久久久久久久| 国产精品亲子乱子伦xxxx裸| 日韩午夜在线观看视频| 欧美三电影在线| 色婷婷综合久久久| 99久精品国产| 99久久99久久精品免费看蜜桃| 国产精品亚洲一区二区三区在线| 久久福利资源站| 麻豆91精品91久久久的内涵| 亚洲成人你懂的| 亚洲成人精品一区| 亚洲最新视频在线观看| 亚洲色图制服丝袜| 国产精品成人一区二区艾草| 国产亚洲一区二区三区在线观看 | 成人国产精品视频| 国产91精品一区二区| 国产91丝袜在线播放0| 国产一区二区女| 国产自产v一区二区三区c| 精品一区二区三区久久久| 激情综合网av| 激情综合色综合久久综合| 国产露脸91国语对白| 国产福利91精品一区| 国产成人免费在线观看不卡| 国产精选一区二区三区| 成人综合在线观看| 成人午夜视频在线| 91亚洲国产成人精品一区二区三| 97精品久久久午夜一区二区三区| 91视频国产资源| 欧美伊人久久久久久久久影院| 欧美日韩国产一二三| 91精品国产麻豆国产自产在线 | 337p亚洲精品色噜噜| 日韩亚洲欧美一区| 久久婷婷国产综合国色天香 | 一区二区三区在线观看网站| 一区二区三区免费| 日韩—二三区免费观看av| 国内精品国产成人| 成人黄色在线视频| 在线精品视频免费播放| 欧美日韩精品一二三区| 精品国产麻豆免费人成网站| 国产欧美日本一区视频| 亚洲精品视频在线看| 青青草一区二区三区| 国产成人免费在线视频| 色婷婷精品久久二区二区蜜臂av| 8x福利精品第一导航| 国产校园另类小说区| 亚洲精品午夜久久久| 久久99精品国产麻豆不卡| 成人黄页在线观看| 欧美丰满少妇xxxxx高潮对白| 精品福利视频一区二区三区| 亚洲色图清纯唯美| 日本aⅴ精品一区二区三区| 成人小视频免费在线观看| 在线观看区一区二| 久久久综合视频| 亚洲国产精品自拍| 丁香网亚洲国际| 91精品国产欧美一区二区18 | 视频在线观看91| 国产91精品一区二区麻豆亚洲| 91九色最新地址| 久久久久久久久久久黄色| 亚洲福中文字幕伊人影院| 国产成人综合网站| 欧美老女人第四色| 中文字幕在线观看不卡视频| 日韩福利视频导航| 91影院在线观看| 久久久久久久综合色一本| 天天综合色天天综合| a美女胸又www黄视频久久| 日韩女优av电影| 亚洲国产精品嫩草影院| av在线不卡免费看| 欧美精品一区二区三区蜜臀 | 精品国产乱码久久久久久牛牛| 亚洲欧美日本韩国| 福利电影一区二区三区| 日韩精品一区二区三区四区视频| 尤物av一区二区| 成人激情综合网站| 国产三级精品视频| 久久国产精品99久久人人澡| 欧美三级在线看| 一区二区三区久久| 色天使色偷偷av一区二区| 国产蜜臀97一区二区三区| 久久成人av少妇免费| 欧美高清性hdvideosex| 亚洲最大成人综合| 99久久精品国产一区| 中文字幕精品在线不卡| 狠狠狠色丁香婷婷综合久久五月| 777久久久精品| 天堂一区二区在线免费观看| 欧美日韩五月天| 亚洲电影在线免费观看| 欧美在线观看一区二区| 亚洲综合在线五月| 精品视频一区二区三区免费| 一区二区三区四区蜜桃| 日本精品免费观看高清观看| 亚洲人成在线播放网站岛国| 99视频有精品| 亚洲免费观看高清完整| 色美美综合视频| 一区二区三区日韩在线观看| 色天使色偷偷av一区二区| 亚洲一区在线观看网站| 欧美日韩一区中文字幕| 日韩电影在线观看电影| 日韩欧美一区二区三区在线| 蜜臀av一区二区| 精品播放一区二区| 国产1区2区3区精品美女| 中文字幕在线不卡一区二区三区| 99视频精品全部免费在线| 伊人色综合久久天天人手人婷| 欧美色男人天堂| 九九在线精品视频| 国产日韩三级在线| 一本色道久久综合亚洲精品按摩| 亚洲综合精品久久| 日韩欧美国产一区在线观看| 国产乱一区二区| 国产精品福利一区| 欧美性猛交xxxxxx富婆| 麻豆91免费观看| 国产精品污网站| 欧美亚洲国产怡红院影院| 轻轻草成人在线| 国产精品久久久久久久久免费丝袜| 97精品电影院| 久久丁香综合五月国产三级网站| 国产亚洲精品aa| 欧美日韩国产大片| 国产91丝袜在线播放0| 亚洲国产精品一区二区尤物区| 日韩欧美一区电影| 91性感美女视频|