亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? grcalc.f90

?? CCSM Research Tools: Community Atmosphere Model (CAM)
?? F90
?? 第 1 頁 / 共 3 頁
字號:
#include <misc.h>#include <params.h>! Note that this routine has 2 complete blocks of code for PVP vs. non-PVP.! Make sure to make appropriate coding changes where necessary.#if ( defined PVP )subroutine grcalcs (irow    ,ztodt   ,grts    ,grths   ,grds    ,&                    grzs    ,grus    ,gruhs   ,grvs    ,grvhs   ,&                    grpss   ,grdpss  ,grpms   ,grpls   )!-----------------------------------------------------------------------!! Complete inverse Legendre transforms from spectral to Fourier space at ! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric Fourier coeffs of temperature and! "grtha" contains the antisymmetric Fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!!---------------------------Code history--------------------------------!! Original version:  CCM1! Standardized:      J. Rosinski, June 1992! Reviewed:          B. Boville, D. Williamson, J. Hack, August 1992! Reviewed:          B. Boville, D. Williamson, April 1996!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/09/16 22:13:25 rosinski Exp $! $Author: rosinski $!   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra, ez   implicit none#include <comhd.h>!! Input arguments!   integer, intent(in) :: irow         ! latitude pair index   real(r8), intent(in) :: ztodt       ! twice the timestep unless nstep = 0!! Output arguments: symmetric fourier coefficients!   real(r8), intent(out) :: grts(plond,plev)    ! sum(n) of t(n,m)*P(n,m)   real(r8), intent(out) :: grths(plond,plev)   ! sum(n) of K(2i)*t(n,m)*P(n,m)   real(r8), intent(out) :: grds(plond,plev)    ! sum(n) of d(n,m)*P(n,m)   real(r8), intent(out) :: grzs(plond,plev)    ! sum(n) of z(n,m)*P(n,m)   real(r8), intent(out) :: grus(plond,plev)    ! sum(n) of z(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: gruhs(plond,plev)   ! sum(n) of K(2i)*z(n,m)*H(n,m)*a/(n(n+1))    real(r8), intent(out) :: grvs(plond,plev)    ! sum(n) of d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grvhs(plond,plev)   ! sum(n) of K(2i)*d(n,m)*H(n,m)*a/(n(n+1))   real(r8), intent(out) :: grpss(plond)        ! sum(n) of lnps(n,m)*P(n,m)   real(r8), intent(out) :: grdpss(plond)       ! sum(n) of K(4)*(n(n+1)/a**2)**2*2dt*lnps(n,m)*P(n,m)   real(r8), intent(out) :: grpms(plond)        ! sum(n) of lnps(n,m)*H(n,m)   real(r8), intent(out) :: grpls(plond)        ! sum(n) of lnps(n,m)*P(n,m)*m/a!!---------------------------Local workspace-----------------------------!   real(r8) gru1s(plond,plev)   ! sum(n) of d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) gruh1s(plond,plev)  ! sum(n) of K(2i)*d(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grv1s(plond,plev)   ! sum(n) of z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) grvh1s(plond,plev)  ! sum(n) of K(2i)*z(n,m)*P(n,m)*m*a/(n(n+1))   real(r8) zdfac(2*pnmax,plev) ! horiz. diffusion factor (vort,div) (complex)   real(r8) tqfac(2*pnmax,plev) ! horiz. diffusion factor (t,q) (complex)   real(r8) alp2(2*pspt)        ! Legendre functions (complex)   real(r8) dalp2(2*pspt)       ! derivative of Legendre functions (complex)   real(r8) alpn2(2*pspt)       ! (a*m/(n(n+1)))*Legendre functions (complex)   real(r8) dalpn2(2*pspt)      ! (a/(n(n+1)))*derivative of Legendre functions (complex)   real(r8) dlpnz               ! (a/(n(n+1)))*H(0,1) for conversion bet abs and rel vort   real(r8) zurcor              ! conversion term relating abs. & rel. vort.   integer k                ! level index   integer m                ! diagonal element(index) of spectral array   integer n                ! meridional wavenumber index   integer ne               ! index into spectral arrays   integer mn               ! index into spectral arrays   integer mnc              ! index into spectral arrays   integer mnev             ! index into spectral arrays!!-----------------------------------------------------------------------!! Compute alpn and dalpn! Expand polynomials and derivatives to complex form to allow largest ! possible vector length and multiply by appropriate factors!   do n=1,pmax      ne = n - 1!dir$ ivdep      do m=1,nmreduced(n,irow)         mnc = 2*(m+nalp(n))         mn = m + nalp(n)         alp2(mnc-1) = alp(mn,irow)         alp2(mnc  ) = alp(mn,irow)         dalp2(mnc-1) = dalp(mn,irow)*ra         dalp2(mnc  ) = dalp(mn,irow)*ra         alpn2(mnc-1) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         alpn2(mnc  ) = alp(mn,irow)*(rsq(m+ne)*ra)*xm(m)         dalpn2(mnc-1) = dalp(mn,irow)*(rsq(m+ne)*ra)         dalpn2(mnc  ) = dalp(mn,irow)*(rsq(m+ne)*ra)      end do   end do   dlpnz = dalpn2(2*nalp(2)+1)   zurcor = ez*dlpnz!! Initialize sums!   grzs(:,:)  = 0.   grds(:,:)  = 0.   gruhs(:,:) = 0.   grvhs(:,:) = 0.   grths(:,:) = 0.   grpss(:)   = 0.   grus(:,:)  = 0.   grvs(:,:)  = 0.   grts(:,:)  = 0.   grpls(:)   = 0.   grpms(:)   = 0.   grdpss(:)   = 0.   do k=1,plev!! Diffusion factors: expand for longest possible vectors!!dir$ ivdep      do n=1,pnmax         zdfac(n*2-1,k) = -hdifzd(n,k)         zdfac(n*2  ,k) = -hdifzd(n,k)         tqfac(n*2-1,k) = -hdiftq(n,k)         tqfac(n*2  ,k) = -hdiftq(n,k)      end do      gru1s(:,k) = 0.      gruh1s(:,k) = 0.      grv1s(:,k) = 0.      grvh1s(:,k) = 0.!! Evaluate symmetric components involving P and antisymmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n=1,ncutoff,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            grts (m,k) = grts (m,k) + t(mnev,k)*alp2(mn)            grths(m,k) = grths(m,k) + t(mnev,k)*alp2(mn)*tqfac(m+ne,k)            grds(m,k) = grds(m,k) + d(mnev,k)*alp2(mn)            grzs(m,k) = grzs(m,k) + vz(mnev,k)*alp2(mn)            gru1s (m,k) = gru1s (m,k) + d(mnev,k)*alpn2(mn)            gruh1s(m,k) = gruh1s(m,k) + d(mnev,k)*alpn2(mn)*zdfac(m+ne,k)            grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2(mn)            grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2(mn)*zdfac(m+ne,k)         end do      end do!! Evaluate antisymmetric components involving P and symmetric involving ! H. Loop over n for t(m), q(m), d(m),and the two parts of u(m) and v(m).! The inner (vector) loop accumulates sums over n along the diagonals! of the spectral truncation to obtain the maximum length vectors.!! "ncutoff" is used to switch to vectorization in the vertical when the ! length of the diagonal is less than the number of levels.!      do n=2,ncutoff,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            grus (m,k) = grus (m,k) + vz(mnev,k)*dalpn2(mn)            gruhs(m,k) = gruhs(m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            grvs (m,k) = grvs (m,k) - d(mnev,k)*dalpn2(mn)            grvhs(m,k) = grvhs(m,k) - d(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)         end do      end do   end do!! For short diagonals, repeat above loops with vectorization in vertical,! instead of along diagonals, to keep vector lengths from getting too short.!   if (ncutoff.lt.pmax) then      do n=ncutoff+1,pmax,2   ! ncutoff guaranteed even         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            do k=1,plev               grts (m,k) = grts (m,k) + t(mnev,k)*alp2(mn)               grths(m,k) = grths(m,k) + t(mnev,k)*alp2(mn)*tqfac(m+ne,k)               grds(m,k) = grds(m,k) + d(mnev,k)*alp2(mn)               grzs(m,k) = grzs(m,k) + vz(mnev,k)*alp2(mn)               gru1s (m,k) = gru1s (m,k) + d(mnev,k)*alpn2(mn)               gruh1s(m,k) = gruh1s(m,k) + d(mnev,k)*alpn2(mn)*zdfac(m+ne,k)               grv1s (m,k) = grv1s (m,k) + vz(mnev,k)*alpn2(mn)               grvh1s(m,k) = grvh1s(m,k) + vz(mnev,k)*alpn2(mn)*zdfac(m+ne,k)            end do         end do      end do      do n=ncutoff+2,pmax,2         ne = 2*(n-1)         do m=1,2*nmreduced(n,irow)            mnev = m + nco2(n) - 2            mn = m + 2*nalp(n)            do k=1,plev               grus (m,k) = grus (m,k) + vz(mnev,k)*dalpn2(mn)               gruhs(m,k) = gruhs(m,k) + vz(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)               grvs (m,k) = grvs (m,k) - d(mnev,k)*dalpn2(mn)               grvhs(m,k) = grvhs(m,k) - d(mnev,k)*dalpn2(mn)*zdfac(m+ne,k)            end do         end do      end do   end if                      ! ncutoff.lt.pmax   do k=1,plev!! Combine the two parts of u(m) and v(m)!!dir$ ivdep      do m=1,nmmax(irow)         grus (2*m-1,k) = grus (2*m-1,k) + gru1s (2*m  ,k)         gruhs(2*m-1,k) = gruhs(2*m-1,k) + gruh1s(2*m  ,k)         grus (2*m  ,k) = grus (2*m  ,k) - gru1s (2*m-1,k)         gruhs(2*m  ,k) = gruhs(2*m  ,k) - gruh1s(2*m-1,k)         grvs (2*m-1,k) = grvs (2*m-1,k) + grv1s (2*m  ,k)         grvhs(2*m-1,k) = grvhs(2*m-1,k) + grvh1s(2*m  ,k)         grvs (2*m  ,k) = grvs (2*m  ,k) - grv1s (2*m-1,k)         grvhs(2*m  ,k) = grvhs(2*m  ,k) - grvh1s(2*m-1,k)      end do!! Remove Coriolis contribution to absolute vorticity from u(m)! Correction for u:zeta=vz-ez=(zeta+f)-f!      grus(1,k) = grus(1,k) - zurcor   end do!!-----------------------------------------------------------------------! Computation for single level variables.!! Evaluate symmetric components involving P and antisymmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=1,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpss (m) = grpss (m) + alps(mnev)*alp2(mn)         grdpss(m) = grdpss(m) + alps(mnev)*alp2(mn)*hdfst4(ne+(m+1)/2)*ztodt      end do   end do!! Evaluate antisymmetric components involving P and symmetric involving ! H.  Loop over n for lnps(m) and derivatives.! The inner loop accumulates over n along diagonal of the truncation.!   do n=2,pmax,2      ne = n - 1      do m=1,2*nmreduced(n,irow)         mnev = m + nco2(n) - 2         mn = m + 2*nalp(n)         grpms(m) = grpms(m) + alps(mnev)*dalp2(mn)      end do   end do!! Multiply by m/a to get d(ln(p*))/dlamda! and by 1/a to get (1-mu**2)d(ln(p*))/dmu!   do m=1,nmmax(irow)      grpls(2*m-1) = -grpss(2*m  )*ra*xm(m)      grpls(2*m  ) =  grpss(2*m-1)*ra*xm(m)   end do!   returnend subroutine grcalcssubroutine grcalca (irow    ,ztodt   ,grta    ,grtha   ,grda    ,&                    grza    ,grua    ,gruha   ,grva    ,grvha   ,&                    grpsa   ,grdpsa  ,grpma   ,grpla   )!-----------------------------------------------------------------------!! Complete inverse Legendre transforms from spectral to Fourier space at ! the the given latitude. Only positive latitudes are considered and ! symmetric and antisymmetric (about equator) components are computed. ! The sum and difference of these components give the actual fourier ! coefficients for the latitude circle in the northern and southern ! hemispheres respectively.!! The naming convention is as follows:!  - The fourier coefficient arrays all begin with "gr";!  - "t, q, d, z, ps" refer to temperature, specific humidity, !     divergence, vorticity, and surface pressure;!  - "h" refers to the horizontal diffusive tendency for the field.!  - "s" suffix to an array => symmetric component;!  - "a" suffix to an array => antisymmetric component.! Thus "grts" contains the symmetric Fourier coeffs of temperature and! "grtha" contains the antisymmetric Fourier coeffs of the temperature! tendency due to horizontal diffusion.! Three additional surface pressure related quantities are returned:!  1. "grdpss" and "grdpsa" contain the surface pressure factor!      (proportional to del^4 ps) used for the partial correction of !      the horizontal diffusion to pressure surfaces.!  2. "grpms" and "grpma" contain the longitudinal component of the !      surface pressure gradient.!  3. "grpls" and "grpla" contain the latitudinal component of the !      surface pressure gradient.!!---------------------------Code history--------------------------------!! Original version:  CCM1! Standardized:      J. Rosinski, June 1992! Reviewed:          B. Boville, D. Williamson, J. Hack, August 1992! Reviewed:          B. Boville, D. Williamson, April 1996!!-----------------------------------------------------------------------!! $Id: grcalc.F90,v 1.5 2001/09/16 22:13:25 rosinski Exp $! $Author: rosinski $!   use precision   use pmgrid   use pspect   use comspe   use rgrid   use commap   use dynconst, only: ra, ez   implicit none#include <comhd.h>!! Input arguments!

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美剧情电影在线观看完整版免费励志电影 | 精品福利一二区| 国产精品三级av| 日日夜夜免费精品| 99re热这里只有精品免费视频| 在线不卡a资源高清| 中文字幕一区在线观看视频| 久久精品二区亚洲w码| 在线一区二区三区四区| 国产精品美日韩| 国产尤物一区二区| 日韩网站在线看片你懂的| 亚洲一区二区免费视频| 91在线你懂得| 中文字幕制服丝袜成人av| 国内外成人在线视频| 欧美一区二区三区在线看| 一区二区三区美女| 色伊人久久综合中文字幕| 国产精品久久久久桃色tv| 国产剧情一区在线| 精品久久久久av影院| 亚洲午夜一区二区三区| 一本久久a久久精品亚洲| 国产精品天美传媒| 国产精品18久久久久久久久 | 成人性生交大片免费看中文| 久久一区二区三区国产精品| 肉色丝袜一区二区| 8x福利精品第一导航| 日韩激情视频网站| 777午夜精品视频在线播放| 视频一区在线播放| 91精品蜜臀在线一区尤物| 日韩电影在线一区二区三区| 日韩午夜激情av| 国产一区视频导航| 久久精品亚洲麻豆av一区二区 | 精品国产免费一区二区三区香蕉 | 亚洲v中文字幕| 欧美日韩国产123区| 日韩电影免费在线看| 日韩一卡二卡三卡| 国产一区二区精品久久99| 久久人人爽爽爽人久久久| 国产剧情一区二区| 亚洲三级久久久| 欧美三级在线看| 久久国产精品露脸对白| 久久久久久久电影| 不卡一区中文字幕| 亚洲一区二区三区不卡国产欧美| 欧美日韩日日摸| 久久99精品视频| 亚洲欧美怡红院| 欧美剧在线免费观看网站| 极品美女销魂一区二区三区 | 亚洲国产日韩一级| 日韩一级完整毛片| 波多野结衣视频一区| 亚洲自拍偷拍九九九| 日韩免费性生活视频播放| 成人性生交大片免费看中文 | 亚洲图片你懂的| 欧美一二三区在线观看| 大桥未久av一区二区三区中文| 亚洲欧美一区二区三区孕妇| 91精品国产综合久久蜜臀| 粉嫩嫩av羞羞动漫久久久| 亚洲成av人在线观看| 久久五月婷婷丁香社区| 色综合色狠狠综合色| 久久精品国产成人一区二区三区 | 久久久久亚洲综合| 欧美做爰猛烈大尺度电影无法无天| 免费的成人av| 一区二区高清视频在线观看| 精品国产电影一区二区| 日本电影欧美片| 成人免费视频免费观看| 美女精品一区二区| 亚洲综合久久av| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 欧美不卡视频一区| 欧美体内she精视频| 国产盗摄一区二区三区| 免费不卡在线视频| 亚洲国产精品精华液网站| 中文字幕av不卡| 欧美刺激午夜性久久久久久久| 在线亚洲高清视频| 99国产精品久久久久久久久久 | 亚洲高清三级视频| 国产精品久久久久永久免费观看 | 国产激情一区二区三区四区| 免费精品视频在线| 日韩精品一卡二卡三卡四卡无卡| 一区二区中文视频| 国产精品理论在线观看| 国产亚洲综合av| 2021中文字幕一区亚洲| 欧美一区永久视频免费观看| 欧美性受xxxx黑人xyx性爽| 91在线视频官网| 99精品久久只有精品| 成人中文字幕合集| 成人av在线电影| 成人综合激情网| 丁香六月综合激情| 成人白浆超碰人人人人| 国产成+人+日韩+欧美+亚洲| 精品一区免费av| 久久精品国产99久久6| 久久66热re国产| 国模大尺度一区二区三区| 韩国av一区二区| 国产一区美女在线| 国产美女在线观看一区| 粉嫩av一区二区三区在线播放| 国产乱人伦精品一区二区在线观看| 捆绑变态av一区二区三区| 国产制服丝袜一区| 国产福利电影一区二区三区| 成人av集中营| 色香蕉久久蜜桃| 欧美精品久久久久久久多人混战 | 一区在线中文字幕| 一区二区三区久久久| 天堂一区二区在线| 久久99蜜桃精品| 懂色av一区二区三区免费看| 91免费观看视频| 精品1区2区3区| 日韩精品综合一本久道在线视频| 久久综合九色欧美综合狠狠| 国产三区在线成人av| 综合久久久久综合| 亚洲成av人片一区二区| 精品一区二区三区免费毛片爱 | 国内精品写真在线观看| 粉嫩aⅴ一区二区三区四区| 91香蕉国产在线观看软件| 欧美日韩国产乱码电影| 26uuu国产电影一区二区| 中文字幕日韩精品一区| 香蕉成人啪国产精品视频综合网 | www久久精品| 亚洲精品国产第一综合99久久| 日韩黄色免费电影| 成人av免费在线观看| 欧美伦理电影网| 久久综合色综合88| 亚洲国产一区二区视频| 国产精品资源在线| 欧美日韩一区中文字幕| 欧美韩国日本不卡| 日韩电影在线免费| 91丝袜呻吟高潮美腿白嫩在线观看| 91精品国产综合久久久蜜臀粉嫩| 国产日韩成人精品| 日韩中文欧美在线| 91首页免费视频| 亚洲精品一区二区三区精华液| 亚洲综合丁香婷婷六月香| 国产福利一区二区| 91麻豆精品国产无毒不卡在线观看| 国产三级精品三级| 青青草伊人久久| 色视频欧美一区二区三区| 久久色在线观看| 麻豆精品在线视频| 欧美日韩视频在线一区二区 | 婷婷六月综合网| 波多野结衣亚洲| 欧美经典三级视频一区二区三区| 日本中文字幕一区| 在线视频一区二区三| 中文字幕在线观看不卡| 精品夜夜嗨av一区二区三区| 欧美撒尿777hd撒尿| 亚洲男人的天堂在线观看| 国产福利91精品| 国产亚洲一区字幕| 黄色小说综合网站| 精品久久久久久亚洲综合网 | 丁香一区二区三区| 2021国产精品久久精品| 伦理电影国产精品| 日韩一区二区三区免费看| 天堂影院一区二区| 欧美区一区二区三区| 亚洲国产中文字幕在线视频综合| 一本一道久久a久久精品| 亚洲三级在线播放| 在线国产电影不卡| 亚洲午夜一区二区| 欧美日韩午夜影院| 偷拍一区二区三区| 日韩一级免费观看| 国内精品国产成人|