?? blackscholes.m
字號:
% PURPOSE : Demonstrate the differences between the following% filters on an options pricing problem.% % 1) Extended Kalman Filter (EKF)% 2) Unscented Kalman Filter (UKF)% 3) Particle Filter (PF)% 4) PF with EKF proposal (PFEKF)% 5) PF with UKF proposal (PFUKF)% For more details refer to:% AUTHORS : Nando de Freitas (jfgf@cs.berkeley.edu)% Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)% + We re-used a bit of code by Mahesan Niranjan. % DATE : 17 August 2000clear all;echo off;path('./ukf',path);path('./data',path);% INITIALISATION AND PARAMETERS:% ==============================doPlot = 0; % 1 plot online. 0 = only plot at the end.g1 = 3; % Paramater of Gamma transition prior.g2 = 2; % Parameter of Gamman transition prior. % Thus mean = 3/2 and var = 3/4.T = 204; % Number of time steps.R = diag([1e-5 1e-5]); % EKF's measurement noise variance. Q = diag([1e-7 1e-5]); % EKF's process noise variance.P01 = 0.1; % EKF's initial variance of the % interest rate.P02 = 0.1; % EKF's initial variance of the volatility.N = 10; % Number of particles.optionNumber = 1; % There are 5 pairs of options.resamplingScheme = 1; % The possible choices are % systematic sampling (2), % residual (1) % and multinomial (3). % They're all O(N) algorithms. P01_ukf = 0.1;P02_ukf = 0.1; Q_ukf = Q;R_ukf = R; initr = .01;initsig = .15;Q_pfekf = 10*1e-5*eye(2);R_pfekf = 1e-6*eye(2);Q_pfukf = Q_pfekf;R_pfukf = R_pfekf; alpha = 1; % UKF : point scaling parameterbeta = 2; % UKF : scaling parameter for higher order terms of Taylor series expansion kappa = 1; % UKF : sigma point selection scaling parameter (best to leave this = 0)no_of_experiments = 1; % Number of times the experiment is % repeated (for statistical purposes).% DATA STRUCTURES FOR RESULTS% ===========================errorcTrivial = zeros(no_of_experiments,1);errorpTrivial = errorcTrivial;errorcEKF = errorcTrivial;errorpEKF = errorcTrivial;errorcUKF = errorcTrivial;errorpUKF = errorcTrivial;errorcPF = errorcTrivial;errorpPF = errorcTrivial;errorcPFEKF = errorcTrivial;errorpPFEKF = errorcTrivial;errorcPFUKF = errorcTrivial;errorpPFUKF = errorcTrivial;% LOAD THE DATA:% =============fprintf('\n')fprintf('Loading the data')fprintf('\n')load c2925.prn; load p2925.prn;load c3025.prn; load p3025.prn;load c3125.prn; load p3125.prn;load c3225.prn; load p3225.prn;load c3325.prn; load p3325.prn;X=[2925; 3025; 3125; 3225; 3325];[d1,i1]=sort(c2925(:,1)); Y1=c2925(i1,:); Z1=p2925(i1,:);[d2,i2]=sort(c3025(:,1)); Y2=c3025(i2,:); Z2=p3025(i2,:);[d3,i3]=sort(c3125(:,1)); Y3=c3125(i3,:); Z3=p3125(i3,:);[d4,i4]=sort(c3225(:,1)); Y4=c3225(i4,:); Z4=p3225(i4,:);[d5,i5]=sort(c3325(:,1)); Y5=c3325(i5,:); Z5=p3325(i5,:);d=Y1(:,1); % d - date to maturity.St(1,:) = Y1(:,3)'; C(1,:) = Y1(:,2)'; P(1,:) = Z1(:,2)';St(2,:) = Y2(:,3)'; C(2,:) = Y2(:,2)'; P(2,:) = Z2(:,2)';St(3,:) = Y3(:,3)'; C(3,:) = Y3(:,2)'; P(3,:) = Z3(:,2)';St(4,:) = Y4(:,3)'; C(4,:) = Y4(:,2)'; P(4,:) = Z4(:,2)';St(5,:) = Y5(:,3)'; C(5,:) = Y5(:,2)'; P(5,:) = Z5(:,2)';% St - Stock price.% C - Call option price.% P - Put Option price.% X - Strike price.% Normalise with respect to the strike price:for i=1:5 Cox(i,:) = C(i,:) / X(i); Sox(i,:) = St(i,:) / X(i); Pox(i,:) = P(i,:) / X(i);endCpred=zeros(T,5);Ppred=zeros(T,5);% PLOT THE LOADED DATA:% ====================figure(1)clf;plot(Cox');ylabel('Call option prices','fontsize',15);xlabel('Time to maturity','fontsize',15);fprintf('\n')fprintf('Press a key to continue') pause;fprintf('\n')fprintf('\n')fprintf('Training has started')fprintf('\n')% SPECIFY THE INPUTS AND OUTPUTS% ==============================ii=optionNumber; % Only one call price. Change 1 to 3, etc. for other prices.X = X(ii,1);St = Sox(ii,1:T);C = Cox(ii,1:T);P = Pox(ii,1:T);counter=1:1:T;tm = (224*ones(size(counter))-counter)/260;u = [St' tm']';y = [C' P']'; % Call and put prices.% MAIN LOOP% =========for expr=1:no_of_experiments, rand('state',sum(100*clock)); % Shuffle the pack! randn('state',sum(100*clock)); % Shuffle the pack! %%%%%%%%%%%%%%% PERFORM EKF and UKF ESTIMATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ============================== %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============mu_ekf = ones(2,T); % EKF estimate of the mean of the states.Inn = ones(2,2,T); % Innovations Covariance.Inn_ukf = Inn;mu_ekf(1,1) = initr;mu_ekf(2,1) = initsig;P_ekf = ones(2,2,T); % EKF estimate of the variance of the states.for t=1:T P_ekf(:,:,t)= diag([P01 P02]);end;mu_ukf = mu_ekf; % UKF estimate of the mean of the states.P_ukf = P_ekf; % UKF estimate of the variance of the states.yPred = ones(2,T); % One-step-ahead predicted values of y.yPred_ukf = yPred;mu_ekfPred = mu_ekf; % EKF O-s-a estimate of the mean of the states.PPred =eye(2); % EKF O-s-a estimate of the variance of the states.disp(' ');for t=2:T, fprintf('EKF & UKF : t = %i / %i \r',t,T); fprintf('\n') % EKF PREDICTION STEP: % ==================== mu_ekfPred(:,t) = feval('bsffun',mu_ekf(:,t-1),t); Jx = eye(2); % Jacobian for bsffun. PPred = Q + Jx*P_ekf(:,:,t-1)*Jx'; % EKF CORRECTION STEP: % ==================== yPred(:,t) = feval('bshfun',mu_ekfPred(:,t),u(:,t),t); % COMPUTE THE JACOBIAN: St = u(1,t); % Index price. tm = u(2,t); % Time to maturity. r = mu_ekfPred(1,t); % Risk free interest rate. sig = mu_ekfPred(2,t); % Volatility. d1 = (log(St) + (r+0.5*(sig^2))*tm ) / (sig * (tm^0.5)); d2 = d1 - sig * (tm^0.5); % Differentials of call price dcsig = St * sqrt(tm) * exp(-d1^2) / sqrt(2*pi); dcr = tm * exp(-r*tm) * normcdf(d2); % Differentials of put price dpsig = dcsig; dpr = -tm * exp(-r*tm) * normcdf(-d2); Jy = [dcr dpr; dcsig dpsig]'; % Jacobian for bshfun. % APPLY THE EKF UPDATE EQUATIONS: M = R + Jy*PPred*Jy'; % Innovations covariance. Inn(:,:,t)=M; K = PPred*Jy'*inv(M); % Kalman gain. mu_ekf(:,t) = mu_ekfPred(:,t) + K*(y(:,t)-yPred(:,t)); P_ekf(:,:,t) = PPred - K*Jy*PPred; % Full Unscented Kalman Filter step % ================================= [mu_ukf(:,t),P_ukf(:,:,t),zab1,zab2,yPred_ukf(:,t),inov_ukf,Inn_ukf(:,:,t),K_ukf]=ukf(mu_ukf(:,t-1),P_ukf(:,:,t-1),u(:,t),Q_ukf,'ukf_bsffun',y(:,t),R_ukf,'ukf_bshfun',t,alpha,beta,kappa); end; % End of t loop.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-- CALCULATE PERFORMANCE --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%figure(3)clf;subplot(211)p1=plot(1:T,mu_ekf(1,:),'r','linewidth',2);hold on;p2=plot(1:T,mu_ukf(1,:),'b','linewidth',2);hold off;legend([p1 p2],'ekf','ukf');ylabel('Interest rate','fontsize',15)subplot(212)p1=plot(1:T,mu_ekf(2,:),'r','linewidth',2);hold on;p2=plot(1:T,mu_ukf(2,:),'b','linewidth',2);hold off;ylabel('Volatility','fontsize',15);xlabel('Time (days)','fontsize',15)zoom on;% Transform innovations covariance for plotting.Inn11=zeros(1,T);Inn22=zeros(1,T);Pekf11=zeros(1,T);Pekf22=zeros(1,T);for t=1:T, Inn11(t)=Inn(1,1,t); Inn22(t)=Inn(2,2,t); Inn11_ukf(t)=Inn_ukf(1,1,t); Inn22_ukf(t)=Inn_ukf(2,2,t); Pekf11(t)=P_ekf(1,1,t); Pekf22(t)=P_ekf(2,2,t); Pukf11(t)=P_ukf(1,1,t); Pukf22(t)=P_ukf(2,2,t);end;figure(1)clf;subplot(211)plot(1:T,y(1,:),'r--',1:T,yPred(1,:),'b','linewidth',2);hold on;plot(1:T,yPred(1,:)+2*sqrt(Inn11),'k',1:T,yPred(1,:)-2*sqrt(Inn11),'k')ylabel('Call price','fontsize',15)legend('Actual price','Prediction');axis([0 204 0.03 .22])title('EKF');subplot(212)plot(1:T,y(2,:),'r--',1:T,yPred(2,:),'b','linewidth',2);hold on;plot(1:T,yPred(2,:)+2*sqrt(Inn22),'k',1:T,yPred(2,:)-2*sqrt(Inn22),'k')ylabel('Put price','fontsize',15)xlabel('Time (days)','fontsize',15)axis([0 204 0 .06])zoom on;legend('Actual price','Prediction');figure(2)clf;subplot(211)plot(1:T,y(1,:),'r--',1:T,yPred_ukf(1,:),'b','linewidth',2);hold on;plot(1:T,yPred_ukf(1,:)+2*sqrt(Inn11_ukf),'k',1:T,yPred_ukf(1,:)-2*sqrt(Inn11_ukf),'k')ylabel('Call price','fontsize',15)legend('Actual price','Prediction');axis([0 204 0.03 .22])title('UKF');subplot(212)plot(1:T,y(2,:),'r--',1:T,yPred_ukf(2,:),'b','linewidth',2);hold on;plot(1:T,yPred_ukf(2,:)+2*sqrt(Inn22_ukf),'k',1:T,yPred_ukf(2,:)-2*sqrt(Inn22_ukf),'k')ylabel('Put price','fontsize',15)xlabel('Time (days)','fontsize',15)axis([0 204 0 .06])zoom on;legend('Actual price','Prediction');%%%%%%%%%%%%%%% PERFORM SEQUENTIAL MONTE CARLO %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ============================== %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pf = ones(2,T,N); % These are the particles for the estimate % of x. Note that there's no need to store % them for all t. We're only doing this to % show you all the nice plots at the end.xparticlePred_pf = ones(2,T,N); % One-step-ahead predicted values of the states.yPred_pf = ones(2,T,N); % One-step-ahead predicted values of y.w = ones(T,N); % Importance weights.% Initialisation:for i=1:N, xparticle_pf(1,1,i) = initr; % sqrt(initr)*randn(1,1); xparticle_pf(2,1,i) = initsig; %sqrt(initsig)*randn(1,1);end;disp(' '); tic; % Initialize timer for benchmarkingfor t=2:T, fprintf('PF : t = %i / %i \r',t,T); fprintf('\n') % PREDICTION STEP: % ================ % We use the transition prior as proposal. for i=1:N, xparticlePred_pf(:,t,i) = feval('bsffun',xparticle_pf(:,t-1,i),t) + sqrtm(Q)*randn(2,1); end; % EVALUATE IMPORTANCE WEIGHTS: % ============================ % For our choice of proposal, the importance weights are give by: for i=1:N, yPred_pf(:,t,i) = feval('bshfun',xparticlePred_pf(:,t,i),u(:,t),t); lik = exp(-0.5*(y(:,t)-yPred_pf(:,t,i))'*inv(R)*(y(:,t)-yPred_pf(:,t,i)) ) + 1e-99; % Deal with ill-conditioning. w(t,i) = lik; end; w(t,:) = w(t,:)./sum(w(t,:)); % Normalise the weights. % SELECTION STEP: % =============== % Here, we give you the choice to try three different types of % resampling algorithms. Note that the code for these algorithms % applies to any problem! if resamplingScheme == 1 outIndex = residualR(1:N,w(t,:)'); % Residual resampling. elseif resamplingScheme == 2 outIndex = systematicR(1:N,w(t,:)'); % Systematic resampling. else outIndex = multinomialR(1:N,w(t,:)'); % Multinomial resampling. end; xparticle_pf(:,t,:) = xparticlePred_pf(:,t,outIndex); % Keep particles with % resampled indices.end; % End of t loop.time_pf = toc; % How long did this take?% Compute posterior mean predictions:yPFmeanC=zeros(1,T);yPFmeanP=zeros(1,T);for t=1:T, yPFmeanC(t) = mean(yPred_pf(1,t,:)); yPFmeanP(t) = mean(yPred_pf(2,t,:)); end; figure(4)clf;domain = zeros(T,1);range = zeros(T,1);thex=[0:1e-3:20e-3];hold onylabel('Time (t)','fontsize',15)xlabel('r_t','fontsize',15)zlabel('p(r_t|S_t,t_m,C_t,P_t)','fontsize',15)for t=11:20:200, [range,domain]=hist(xparticle_pf(1,t,:),thex); waterfall(domain,t,range/sum(range));end;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -