亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? quickstart.tex

?? 神經(jīng)網(wǎng)絡(luò)的工具箱, 神經(jīng)網(wǎng)絡(luò)的工具箱,
?? TEX
字號:
\documentclass{article}\newcommand{\toolboxname}{NetPack}\title{\toolboxname \\ Quick-start (command line)} \parindent 0cm\begin{document}\newcommand{\file}[1]{\texttt{#1}}\newcommand{\matlab}{Matlab}% begin definitie \tbcmd{\catcode`\}=12\catcode`\]=2\global\def\tbcmd#{\verb}\let\troep]]% eind definitie \tbcmd% begin definitie \mlcmd{\catcode`\}=12\catcode`\]=2\global\def\mlcmd#{\verb}\let\troep]]% eind definitie \mlcmd% begin definitie \seealso{\catcode`\}=12\catcode`\]=2\global\def\seealso#{\par See also: \verb}\let\troep]]% eind definitie \seealso% begin definitie environment example\newenvironment{example}{\redefxverbatim\begin{verbatim}}{\end{verbatim}}{\makeatletter\catcode`\/=0\catcode`\\=12/catcode`/{=12/catcode`/}=12/catcode`/[=1/catcode`/]=2/global/def/redefxverbatim[/def/@xverbatim##1\end{example}[##1/end[example]]]] % eind definitie environment example\maketitle%---------------------------------------------------------------------%---------------------------------------------------------------------\section{Before you begin}%---------------------------------------------------------------------Start \matlab\ and add initialize the toolbox. Thiscan be done by running the command \tbcmd{init_netpack_snn}.To do this, at the \matlab\ prompt type  \begin{example}run(fullfile('NETPACKROOT', 'netpack', 'init_netpack_snn'));\end{example}where for NETPACKROOT you substitute the installation path of the\toolboxname\ toolbox (e.g.  \file{/home/user/netpack-toolbox-1.1} or \file{C:$\backslash$netpack-toolbox-1.1}).\parFor (almost) all functions in the toolbox online help is available in\matlab\ by typing:\begin{example}help <function name>\end{example}where \verb|<function name>| is the name of the function you want informationon.%---------------------------------------------------------------------%---------------------------------------------------------------------\section{Training a neural network}%---------------------------------------------------------------------\subsection{Import training data}Training data can be read from file using the command\tbcmd{import_ascii_data_snn}, which reads an ascii file. This filemust contain columns with input and target values. The firstargument is the name of the file, the second and third argumentcontain column indices for inputs and targets.For example, the command\begin{example}wcf_data = import_ascii_data_snn('file.asc', 1, [2 3])\end{example}reads training patterns from the file \file{file.asc}, with inputsfrom the first column of the file, and outputs from the second andthird column.  \seealso{wcfdata_struct_snn}\subsection{Create network}To define the architecture of your feed forward network, you use thecommand \tbcmd{net_struct_snn}, which takes three arguments; 1. anarray of integers with the number of units in each network layer. 2.a cell array with transfer function names for each layer. 3. the nameof a training algorithm.For example, \begin{example}net = net_struct_snn([1 8 2], {'tansigtf_snn' 'lintf_snn'}, 'trainlm_snn')\end{example}creates a network with an input layer with one input, one hidden layerwith 8 units and an output layer with two outputs. The hidden layerhas \mlcmd{tansigtf_snn} (a hyperbolic tangent sigmoid) as a transferfunction and the output layer has as transfer function\mlcmd{lintf_snn} (linear transfer). For training theLevenberg-Marquardt algorithm will be used (\tbcmd{trainlm_snn}).\seealso{transferfcn_snn, trainfcn_snn}\subsection{Train network}Training a network can be done with the command \tbcmd{train_snn}. Thefirst argument contains the network, the second argument the trainingdata. Optionally, a third argument can be specified containingvalidation data which is used to early stop training.For example,\begin{example}[net, tr_info] = train_snn(net, wcf_data)\end{example}\subsection{Use the network as an estimator}After training, the network can be used as an estimator. The command\tbcmd{simff_snn} takes as arguments the network and a matrix with ineach column an input pattern and returns a matrix with in each columnan estimate for the corresponding output.For example,\begin{example}x = [0:0.05:1]y = simff_snn(net, x)\end{example}%---------------------------------------------------------------------%---------------------------------------------------------------------\section{Ensembles}%---------------------------------------------------------------------To estimate confidence and prediction intervals, we use ensembles ofnetworks.\subsection{Train ensembles}An ensemble of networks can be created by training thenetworks on different subsets of the training data set and by trainingwith different initial connection weights. New initial connectionweights can be set with the command \tbcmd{reinitweights_snn}.Training on different subset is done with \tbcmd{train_bootstrap_snn}, whichtakes a bootstrap sample from the original data set to create newtraining and validation sets, or with \tbcmd{train_halfout_snn}, whichdivides the original data set at random in a training and a validation set of equal size. For example,\begin{example}for m = 1:10    net = reinitweights_snn(net);    [nets(m), tr_info(m), datasets(m)] = train_bootstrap_snn(net, wcf_data)end\end{example}or\begin{example}for m = 1:10    net = reinitweights_snn(net);    [nets(m), tr_info(m), datasets(m)] = train_halfout_snn(net, wcf_data)end\end{example}\subsection{Average ensembles}The estimates of the networks in the ensemble can be combined inseveral ways to give an averaged estimate. We use a technique called\emph{balancing}. In balancing we compute a weighted estimate depending on theoutput error functions. First, the weight of each network is computedwith \tbcmd{balance_snn}, which returns a bootstrap estimate of thenetwork weights.For example,\begin{example}bootn = 100;[network_weights, ym] = balance_snn(nets, bootn, datasets)\end{example}Then, for each input pattern a new averaged estimate can be computedwith \tbcmd{simff_avr_snn}.For example,\begin{example}[y_av, err_estimate] = simff_avr_snn(nets, network_weights, x)\end{example}\subsection{Estimate confidence intervals}Confidence intervals can be calculated with \tbcmd{confidence_snn},which makes an estimate of the lower and upper bound of the interval based on the weighted averaged error and$c_{confidence}$. The value of $c_{confidence}$ depends on thedesired confidence level 1 - $\alpha$, where $\alpha$ is the error level, andcan be calculated with \tbcmd{c_confidence_snn}.For example,\begin{example}error_level = 0.33c_confidence = c_confidence_snn(error_level, nets, wcf_data, network_weights)[ylc, yuc, y_av] = confidence_snn(c_confidence, nets, network_weights, x)\end{example}\subsection{Estimate prediction intervals}Prediction intervals are calculated with the command\tbcmd{prediction_snn}, which makes an estimate of the lower and upperbound of the interval based on $c_{prediction}$ and a (new) networkwhich gives a prediction of the output noise. This network and$c_{prediction}$ are calculated with \tbcmd{c_prediction_snn}.For example,\begin{example}[c_prediction, noise_net, tr_info] = ...        c_prediction_snn(error_level, nets, datasets, network_weights)[ylp, yup, y_av] = ...        prediction_snn(c_prediction, noise_net, nets, network_weights, x)\end{example}%---------------------------------------------------------------------\end{document}

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产剧情一区二区| 蜜桃视频在线观看一区二区| 不卡的av中国片| 国产精品丝袜91| 在线观看亚洲一区| 麻豆成人91精品二区三区| 欧美一级电影网站| 国产成人小视频| 亚洲三级在线免费| 国产精品色噜噜| 91在线一区二区三区| 亚洲成人先锋电影| 69久久99精品久久久久婷婷| 久久国产尿小便嘘嘘| 国产色产综合色产在线视频| 99久久精品久久久久久清纯| 亚洲欧美偷拍三级| 欧美一区二区三区系列电影| 国产一区二区三区精品欧美日韩一区二区三区 | 看电视剧不卡顿的网站| 久久久www免费人成精品| av在线不卡电影| 亚洲图片有声小说| 欧美α欧美αv大片| 不卡的av在线| 琪琪久久久久日韩精品| 久久精品一级爱片| 欧美日韩综合色| 国产乱码精品一区二区三区av| 国产精品欧美一区喷水| 欧美精品aⅴ在线视频| 国产福利电影一区二区三区| 亚洲精品老司机| 久久色成人在线| 欧美亚洲动漫另类| 国产高清不卡一区二区| 悠悠色在线精品| 久久嫩草精品久久久精品| 色噜噜狠狠色综合欧洲selulu| 青青青爽久久午夜综合久久午夜| 国产精品不卡一区| 日韩精品一区二区三区视频播放| 91啪亚洲精品| 国产99久久久国产精品| 麻豆成人久久精品二区三区小说| 亚洲乱码国产乱码精品精小说 | 色婷婷亚洲精品| 国产福利一区在线| 日韩精品1区2区3区| 亚洲免费观看在线视频| 久久久久亚洲蜜桃| 日韩一区二区三区四区| 亚洲精品水蜜桃| 中文乱码免费一区二区| 精品少妇一区二区三区在线播放| voyeur盗摄精品| 国产乱人伦偷精品视频不卡 | 亚洲三级电影网站| 国产精品拍天天在线| 久久久综合精品| 26uuu色噜噜精品一区二区| 69精品人人人人| 欧美日韩中文字幕一区| 97久久精品人人做人人爽50路| 国产成人啪午夜精品网站男同| 免费成人美女在线观看| 天堂精品中文字幕在线| 亚洲电影视频在线| 亚洲第一激情av| 午夜精品一区二区三区免费视频 | 亚洲国产另类av| 亚洲伊人色欲综合网| 亚洲男人的天堂在线观看| 国产精品区一区二区三| 国产精品久久久久久户外露出| 国产日韩欧美电影| 国产精品麻豆欧美日韩ww| 亚洲国产成人一区二区三区| 欧美国产日韩a欧美在线观看 | 麻豆精品一区二区综合av| 日韩精彩视频在线观看| 日本在线播放一区二区三区| 日本午夜一本久久久综合| 日本免费新一区视频| 久久爱www久久做| 国产一区二区三区在线观看免费视频| 久草中文综合在线| 国产成人精品免费网站| thepron国产精品| 日本韩国欧美三级| 欧美日韩久久一区二区| 91 com成人网| 精品av久久707| 亚洲国产高清在线观看视频| 亚洲精品欧美激情| 秋霞国产午夜精品免费视频| 激情文学综合插| 99久久久精品免费观看国产蜜| 一本久久a久久精品亚洲| 欧美日韩国产小视频| 欧美不卡一二三| 亚洲欧洲99久久| 天堂va蜜桃一区二区三区漫画版| 久久99国产精品尤物| 国产成人亚洲综合色影视| 99国产精品国产精品久久| 欧美日韩一区二区三区视频 | 91精品婷婷国产综合久久| 亚洲精品在线观看视频| 国产精品白丝在线| 日本成人在线电影网| 成人一道本在线| 欧美日韩国产综合一区二区| 久久精品视频在线免费观看| 亚洲精品ww久久久久久p站| 久久99精品网久久| 91麻豆国产香蕉久久精品| 欧美一级夜夜爽| 国产精品色一区二区三区| 午夜激情综合网| 国产99久久久国产精品潘金网站| 欧美亚洲国产bt| 国产欧美日韩三区| 午夜激情综合网| 91在线视频在线| 久久人人爽爽爽人久久久| 亚洲最大成人综合| 国产精品综合视频| 91精品在线免费| 亚洲丝袜美腿综合| 精品系列免费在线观看| 日本精品视频一区二区| 久久久精品免费网站| 五月天丁香久久| av欧美精品.com| 日韩欧美一区二区三区在线| 一区二区三区成人| 国产成人亚洲综合a∨猫咪| 日韩欧美一区二区在线视频| 亚洲狠狠爱一区二区三区| 岛国精品在线观看| 久久久久久久久蜜桃| 青青草原综合久久大伊人精品| 在线免费观看日本欧美| 国产精品美女久久久久久久久久久 | 国产东北露脸精品视频| 91精品国产一区二区人妖| 伊人性伊人情综合网| 成人美女视频在线观看| 精品国产a毛片| 久久成人免费网站| 欧美一区二区三区免费| 午夜av区久久| 欧美日韩电影一区| 亚洲福利国产精品| 欧美日韩在线综合| 亚洲午夜激情av| 欧美亚洲高清一区二区三区不卡| 亚洲视频免费看| 99re视频精品| 亚洲男同性视频| 91社区在线播放| 一区二区三区中文免费| 99国产精品国产精品毛片| 国产精品久99| 91在线国产观看| 亚洲免费大片在线观看| 色哟哟亚洲精品| 一区二区三区不卡视频| 色婷婷久久久久swag精品| 依依成人综合视频| 欧美日韩国产高清一区二区| 午夜免费久久看| 日韩一卡二卡三卡| 国产剧情在线观看一区二区| 久久九九国产精品| 不卡视频在线观看| 一区二区三区日本| 欧美性三三影院| 免费看日韩a级影片| 精品理论电影在线观看| 国产成人免费高清| 亚洲欧美激情一区二区| 在线亚洲人成电影网站色www| 亚洲激情综合网| 91精品国产综合久久久久久漫画 | 亚洲18影院在线观看| 91精品视频网| 国产99精品视频| 亚洲丝袜精品丝袜在线| 欧美日韩中文字幕精品| 久久国产剧场电影| 国产欧美一二三区| 日本韩国欧美国产| 久久精品国产精品亚洲红杏 | 欧洲另类一二三四区| 麻豆成人av在线| ...中文天堂在线一区| 欧美色网一区二区| 久久电影国产免费久久电影|